Patents by Inventor David C. Lundmark

David C. Lundmark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190099611
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 4, 2019
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Fred Moll, Alexander K. Arrow
  • Patent number: 10213617
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: February 26, 2019
    Assignee: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Publication number: 20190038908
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 7, 2019
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Patent number: 10188870
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: January 29, 2019
    Assignee: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Fred Moll, Alexander K. Arrow
  • Publication number: 20190015677
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 17, 2019
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Patent number: 10180734
    Abstract: An augmented reality display system includes an electromagnetic field emitter to emit a known magnetic field in a known coordinate system. The system also includes an electromagnetic sensor to measure a parameter related to a magnetic flux at the electromagnetic sensor resulting from the known magnetic field. The system further includes a depth sensor to measure a distance in the known coordinate system. Moreover, the system includes a controller to determine pose information of the electromagnetic sensor relative to the electromagnetic field emitter in the known coordinate system based at least in part on the parameter related to the magnetic flux measured by the electromagnetic sensor and the distance measured by the depth sensor. In addition, the system includes a display system to display virtual content to a user based at least in part on the pose information of the electromagnetic sensor relative to the electromagnetic field emitter.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 15, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Samuel A. Miller, Michael J. Woods, David C. Lundmark
  • Publication number: 20180345033
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 6, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Fred Moll, Alexander K. Arrow
  • Patent number: 10022553
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: July 17, 2018
    Assignee: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Fred Moll, Alexander K. Arrow
  • Publication number: 20180140862
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 24, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20180133501
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 17, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20180056085
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: October 6, 2017
    Publication date: March 1, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Publication number: 20180028832
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Patent number: 9821170
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: November 21, 2017
    Assignee: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Patent number: 9814900
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: November 14, 2017
    Assignee: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander K. Arrow
  • Publication number: 20170239488
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: March 28, 2017
    Publication date: August 24, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20170225008
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: March 29, 2017
    Publication date: August 10, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Greg Stahler, Dan Andersen, Joyce Huang, David C. Lundmark, David Moore
  • Publication number: 20170205903
    Abstract: An augmented reality display system includes an electromagnetic field emitter to emit a known magnetic field in a known coordinate system. The system also includes an electromagnetic sensor to measure a parameter related to a magnetic flux at the electromagnetic sensor resulting from the known magnetic field. The system further includes a depth sensor to measure a distance in the known coordinate system. Moreover, the system includes a controller to determine pose information of the electromagnetic sensor relative to the electromagnetic field emitter in the known coordinate system based at least in part on the parameter related to the magnetic flux measured by the electromagnetic sensor and the distance measured by the depth sensor. In addition, the system includes a display system to display virtual content to a user based at least in part on the pose information of the electromagnetic sensor relative to the electromagnetic field emitter.
    Type: Application
    Filed: February 6, 2017
    Publication date: July 20, 2017
    Applicant: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Michael J. Woods, David C. Lundmark
  • Publication number: 20170182191
    Abstract: One embodiment is directed to a method for controllably managing pain in the afferent nervous system of a patient having a targeted tissue structure that has been genetically modified to have light sensitive protein, comprising: providing a light delivery element configured to direct radiation to at least a portion of a targeted tissue structure, a light source configured to provide light to the light delivery element, and a controller operatively coupled to light source, wherein the targeted tissue structure comprises a sensory neuron of the patient; and automatically operating the controller to illuminate the targeted tissue structure with radiation such that a membrane potential of cells comprising the targeted tissue structure is modulated at least in part due to exposure of the light sensitive protein to the radiation.
    Type: Application
    Filed: July 29, 2015
    Publication date: June 29, 2017
    Applicant: Circuit Therapeutics, Inc.
    Inventors: Christopher L. Towne, Michael Kaplitt, Scott Delp, Karl Deisseroth, David Angeley, Greg Stahler, Dan Andersen, David C. Lundmark
  • Publication number: 20160096035
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: April 7, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander Arrow
  • Publication number: 20160096034
    Abstract: Configurations are described for utilizing light-activated proteins within cell membranes and subcellular regions to assist with medical treatment paradigms, such as hypertension treatment via anatomically specific and temporally precise modulation of renal plexus activity. The invention provides for proteins, nucleic acids, vectors and methods for genetically targeted expression of light-sensitive proteins to specific cells or defined cell populations. In particular the invention provides systems, devices, and methods for millisecond-timescale temporal control of certain cell activities using moderate light intensities, such as the generation or inhibition of electrical spikes in nerve cells and other excitable cells.
    Type: Application
    Filed: July 28, 2014
    Publication date: April 7, 2016
    Applicant: Circuit Therapeutics, Inc.
    Inventors: David C. Lundmark, Karl Deisseroth, Fred Moll, Dan Andersen, Alexander Arrow