Patents by Inventor David C. Vandervoort

David C. Vandervoort has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10013030
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: July 3, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Caryle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9904318
    Abstract: Edge component shells having reduced height portions are described herein. In one or more implementations, a computing device includes a housing configured to contain and secure componentry for the computing device. A display module for the computing device is positioned within the housing with a topside of the display module being oriented towards an outside of the housing. An edge component such as connection port, wireless radio device, sensor, or other component integrated with the computing device is configured with a shell having a reduced height portion. The edge component is arranged in the housing with the reduced height portion of the shell positioned underneath the display module such that the display module partially overlaps the shell of the edge component along an underside of the display module.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: February 27, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: David C. Vandervoort
  • Patent number: 9904327
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: February 27, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20170277220
    Abstract: Edge component shells having reduced height portions are described herein. In one or more implementations, a computing device includes a housing configured to contain and secure componentry for the computing device. A display module for the computing device is positioned within the housing with a topside of the display module being oriented towards an outside of the housing. An edge component such as connection port, wireless radio device, sensor, or other component integrated with the computing device is configured with a shell having a reduced height portion. The edge component is arranged in the housing with the reduced height portion of the shell positioned underneath the display module such that the display module partially overlaps the shell of the edge component along an underside of the display module.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 28, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: David C. Vandervoort
  • Publication number: 20170177038
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: February 7, 2017
    Publication date: June 22, 2017
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Caryle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9678542
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: June 13, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20170147084
    Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
  • Patent number: 9618977
    Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: April 11, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
  • Publication number: 20160299537
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20160209884
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy Carlyle Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20160124467
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 5, 2016
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9268373
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: February 23, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9176900
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: November 3, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9158384
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 13, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20150261262
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9111703
    Abstract: Sensor stack venting techniques are described. In one or more implementations, one or more vent structures are formed within layers of a pressure sensitive sensor stack for a device. Vent structures including channels, holes, slots, and so forth are designed to provide pathways for gas released by feature elements to escape. The pathways may be arranged to convey outgases through the layers to designated escape points in a controlled manner that prevents deformities typically caused by trapped gases. The escape points in some layers enable at least some other layers to be edge-sealed. Pathways may then be formed to convey gas from the edge-sealed layer(s) to an edge vented layer(s) having one or more escape points, such that feature elements in the edge-sealed layer(s) remain protected from contaminants.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 18, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Timothy C. Shaw, David C. Vandervoort, Todd David Pleake, Rob Huala, Matthew David Mickelson, Joel Lawrence Pelley, Christopher Harry Stoumbos, Richard Peter Spooner
  • Patent number: 9075566
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 7, 2015
    Assignee: Microsoft Technoogy Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8947864
    Abstract: Fabric outer layer techniques are described. In one or more implementations, an apparatus includes, an input portion having one or more keys configured to generate signals to be processed by a computing device as inputs, a connection portion that is configured to be removable attachable to the computing device and including at least one communication contact configured to form a communicative coupling with the computing device to communicate the generated signals, a flexible hinge that is configured to flexibly and communicatively connect the connection portion to the input portion, and first and second outer fabric layers that are configured to act as an outer surface of the one or more keys of the input portion and the flexible hinge and are physically secured to the connection portion.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: February 3, 2015
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8873227
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 28, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140291134
    Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang