Patents by Inventor David C Wittwer

David C Wittwer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936124
    Abstract: An antenna element can include a feed and a radiating element and a dielectric substrate having a first surface and a second surface, the dielectric substrate comprising the feed of the antenna element within the dielectric substrate. The antenna element module can also include an integrated circuit (IC) chip adhered to the first surface the dielectric substrate and coupled to the feed of the antenna element. The IC chip can include a circuit to adjust a signal communicated with the feed. The antenna element module can further include a plastic antenna carrier adhered to the second surface of the dielectric substrate. The plastic antenna carrier can include a body portion comprising a cavity for the radiating element of the antenna element, the radiating element positioned in the cavity of the body portion of the plastic antenna carrier.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 19, 2024
    Assignee: VIASAT, INC.
    Inventors: Douglas J. Mathews, David C. Wittwer, James F. Landers
  • Patent number: 11923608
    Abstract: An artificial magnetic conductor (AMC) antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of memory metal wires, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the memory metal wires electrically connects one of the conductive patches to the base surface. Each of the memory metal wires is rigid in a memory-shaped state, causing the FSS layer to be fixedly spaced from the base surface during operation of the AMC antenna apparatus. The memory metal wires are each flexible in a non-memory-shaped state, enabling the FSS layer to be collapsed towards the base surface when the antenna apparatus is stowed.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: March 5, 2024
    Assignee: VIASAT, INC.
    Inventors: David D. Greenidge, David C. Wittwer, Michael T. Kretsch, Kevin D. House, Mark D. Vossler
  • Patent number: 11876280
    Abstract: An AMC antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of flexible conductors, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the flexible conductors electrically connects one of the conductive patches to the base surface. A latch mechanism is arranged between the base layer and the FSS layer. An inflatable bladder system between the base layer and the FSS layer is configured to receive a gas input during deployment of the antenna apparatus and inflate to produce force sufficient to cause the latch mechanism to transition from an unlatched state to a latched state in which the conductive base surface is fixedly separated from the FSS layer at a predetermined distance.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: January 16, 2024
    Assignee: VIASAT, INC.
    Inventors: David C. Wittwer, David D. Greenidge, Michael T. Kretsch, Kevin D. House, Mark D. Vossler
  • Publication number: 20230327314
    Abstract: An AMC antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of flexible conductors, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the flexible conductors electrically connects one of the conductive patches to the base surface. A latch mechanism is arranged between the base layer and the FSS layer. An inflatable bladder system between the base layer and the FSS layer is configured to receive a gas input during deployment of the antenna apparatus and inflate to produce force sufficient to cause the latch mechanism to transition from an unlatched state to a latched state in which the conductive base surface is fixedly separated from the FSS layer at a predetermined distance.
    Type: Application
    Filed: October 14, 2021
    Publication date: October 12, 2023
    Inventors: David C. Wittwer, David D. Greenidge, Michael T. Kretsch, Kevin D. House, Mark D. Vossler
  • Publication number: 20230307843
    Abstract: An artificial magnetic conductor (AMC) antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of memory metal wires, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the memory metal wires electrically connects one of the conductive patches to the base surface. Each of the memory metal wires is rigid in a memory-shaped state, causing the FSS layer to be fixedly spaced from the base surface during operation of the AMC antenna apparatus. The memory metal wires are each flexible in a non-memory-shaped state, enabling the FSS layer to be collapsed towards the base surface when the antenna apparatus is stowed.
    Type: Application
    Filed: October 14, 2021
    Publication date: September 28, 2023
    Inventors: David D. Greenidge, David C. Wittwer, Michael T. Kretsch, Kevin D. House, Mark D. Vossler
  • Publication number: 20210257739
    Abstract: An antenna element can include a feed and a radiating element and a dielectric substrate having a first surface and a second surface, the dielectric substrate comprising the feed of the antenna element within the dielectric substrate. The antenna element module can also include an integrated circuit (IC) chip adhered to the first surface the dielectric substrate and coupled to the feed of the antenna element. The IC chip can include a circuit to adjust a signal communicated with the feed. The antenna element module can further include a plastic antenna carrier adhered to the second surface of the dielectric substrate. The plastic antenna carrier can include a body portion comprising a cavity for the radiating element of the antenna element, the radiating element positioned in the cavity of the body portion of the plastic antenna carrier.
    Type: Application
    Filed: July 31, 2019
    Publication date: August 19, 2021
    Inventors: DOUGLAS J. MATHEWS, DAVID C. WITTWER, JAMES F. LANDERS
  • Patent number: 7505435
    Abstract: A compact hybrid comprises reactive power-dividers and signal paths coupling the reactive power-dividers to provide a predetermined phase difference therebetween. The signal paths may have 90-degree bends therein to reduce a distance between adjacent reactive power-dividers to less than a physical distance associated with the predetermined phase difference in a stripline medium. The hybrid may be a 180-degree hybrid and may be part of RF circuitry of a wireless communication device to combine signals from a pair of antennas and to provide a sum signal and a difference signal. The RF circuitry may also comprise switching circuitry to select between the sum signal and the difference signal based on a signal quality of the sum and difference signals.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: March 17, 2009
    Assignee: Intel Corporation
    Inventors: David C Wittwer, Mark L Blake