Patents by Inventor David CADA

David CADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220113216
    Abstract: Example computer systems, computer apparatuses, computer methods, and computer program products are disclosed for testing an ultrasonic gas leak detection device. An example method includes determining a rotary position of a rotary selector of the handheld ultrasonic testing device. The method further includes determining whether the rotary position of the rotary selector corresponds to a first testing mode for testing the ultrasonic gas leak detection device or a second testing mode for testing the ultrasonic gas leak detection device. The method further includes generating a first ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the first testing mode. The method further includes generating a second ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the second testing mode.
    Type: Application
    Filed: December 13, 2021
    Publication date: April 14, 2022
    Inventors: Petr Gál, Jan Adamek, Milos Koutny, David Cada, Michal Bohu{hacek over (s)}, Rodney Royston Watts
  • Patent number: 11226256
    Abstract: Example computer systems, computer apparatuses, computer methods, and computer program products are disclosed for testing an ultrasonic gas leak detection device. An example method includes determining a rotary position of a rotary selector of the handheld ultrasonic testing device. The method further includes determining whether the rotary position of the rotary selector corresponds to a first testing mode for testing the ultrasonic gas leak detection device or a second testing mode for testing the ultrasonic gas leak detection device. The method further includes generating a first ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the first testing mode. The method further includes generating a second ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the second testing mode.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: January 18, 2022
    Assignee: Honeywell International Inc.
    Inventors: Petr Gál, Jan Adamek, Milos Koutny, David Cada, Michal Bohu{hacek over (s)}, Rodney Royston Watts
  • Patent number: 10996254
    Abstract: Apparatus and associated methods relate to a functional self-test, including (1) generation of an excitation signal, (2) applying the excitation signal to a unit under test (UUT), the excitation signal including a cyclical signal for a first interval and substantially zero signal for a second interval, (3) determining frequency content of a UUT response signal, and (4) generating a fail result in response to the frequency content below a predetermined threshold. In an illustrative example, the UUT may be a piezoelectric element (PE). The UUT response signal may be processed by a filter, for example. A portion of the filtered UUT response signal, responding to the second interval of the excitation signal, may be analyzed by a fast Fourier transform module (FFTm), for example. In various implementations, the functional self-test may advantageously determine the health of a piezoelectric gas sensing element, periodically, in a field-deployed implementation.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: May 4, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventor: David Cada
  • Publication number: 20200319054
    Abstract: Example computer systems, computer apparatuses, computer methods, and computer program products are disclosed for testing an ultrasonic gas leak detection device. An example method includes determining a rotary position of a rotary selector of the handheld ultrasonic testing device. The method further includes determining whether the rotary position of the rotary selector corresponds to a first testing mode for testing the ultrasonic gas leak detection device or a second testing mode for testing the ultrasonic gas leak detection device. The method further includes generating a first ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the first testing mode. The method further includes generating a second ultrasonic signal for testing the ultrasonic gas leak detection device in response to determining that the rotary position of the rotary selector corresponds to the second testing mode.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 8, 2020
    Inventors: Petr Gál, Jan Adamek, Milos Koutny, David Cada, Michal Bohus, Rodney Royston Watts
  • Publication number: 20190250200
    Abstract: Apparatus and associated methods relate to a functional self-test, including (1) generation of an excitation signal, (2) applying the excitation signal to a unit under test (UUT), the excitation signal including a cyclical signal for a first interval and substantially zero signal for a second interval, (3) determining frequency content of a UUT response signal, and (4) generating a fail result in response to the frequency content below a predetermined threshold. In an illustrative example, the UUT may be a piezoelectric element (PE). The UUT response signal may be processed by a filter, for example. A portion of the filtered UUT response signal, responding to the second interval of the excitation signal, may be analyzed by a fast Fourier transform module (FFTm), for example. In various implementations, the functional self-test may advantageously determine the health of a piezoelectric gas sensing element, periodically, in a field-deployed implementation.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 15, 2019
    Inventor: David CADA