Patents by Inventor David Casavant

David Casavant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10864378
    Abstract: Regulating cardiac activity may include pacing the patient's heart at a starting pacing rate and instigating an intrinsic heart beat search algorithm that includes pacing at a reduced rate for a period of time and capturing electrical signals representative of cardiac electrical activity while pacing at the reduced rate in order to determine a presence or absence of intrinsic heart beats. If intrinsic heart beats are not detected, the heart may be paced at a further reduced rate for a period of time. If intrinsic beats are detected, the heart may be paced again at the starting pacing rate. This may continue until intrinsic heart beats are detected or until a lower search rate limit is reached. Diagnostic data may be collected at each stage and transmitted to a display device for analysis by a physician or the like.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: December 15, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: David A. Casavant, Jeffrey E. Stahmann, Carolina Villarreal, James O. Gilkerson, Deepa Mahajan, Paul Richard Holleran
  • Publication number: 20180256908
    Abstract: Regulating cardiac activity may include pacing the patient's heart at a starting pacing rate and instigating an intrinsic heart beat search algorithm that includes pacing at a reduced rate for a period of time and capturing electrical signals representative of cardiac electrical activity while pacing at the reduced rate in order to determine a presence or absence of intrinsic heart beats. If intrinsic heart beats are not detected, the heart may be paced at a further reduced rate for a period of time. If intrinsic beats are detected, the heart may be paced again at the starting pacing rate. This may continue until intrinsic heart beats are detected or until a lower search rate limit is reached. Diagnostic data may be collected at each stage and transmitted to a display device for analysis by a physician or the like.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 13, 2018
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: David A. Casavant, Jeffrey E. Stahmann, Carolina Villarreal, James O. Gilkerson, Deepa Mahajan, Paul Richard Holleran
  • Patent number: 9375579
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 28, 2016
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 9035844
    Abstract: The invention of the disclosure is an extension cable to connect via telemetry, an external medical device in a non-sterile zone with a medical device that is within a sterile zone. The telemetry extension cable includes a cable having a length and comprising a conductor, a first RF antenna attached at one end of the cable and a second RF antenna attached at a second end of the cable, at least one of the first or second antennas configured to transmit and receive RF signals to and from an implantable medical device.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: May 19, 2015
    Assignee: Medtronic, Inc.
    Inventors: Kathleen R. Malewicki, David A. Casavant, Edward D. Goff, Gary H. Kemmetmueller, David J. Peichel
  • Publication number: 20140340272
    Abstract: The invention of the disclosure is an extension cable to connect via telemetry, an external medical device in a non-sterile zone with a medical device that is within a sterile zone. The telemetry extension cable includes a cable having a length and comprising a conductor, a first RF antenna attached at one end of the cable and a second RF antenna attached at a second end of the cable, at least one of the first or second antennas configured to transmit and receive RF signals to and from an implantable medical device.
    Type: Application
    Filed: May 17, 2013
    Publication date: November 20, 2014
    Applicant: Medtronic, Inc.
    Inventors: Kathleen R. Malewicki, David A. Casavant, Edward D. Goff, Gary H. Kemmetmueller, David J. Peichel
  • Publication number: 20140121716
    Abstract: An implantable medical device capable of delivering high voltage therapy includes a therapy delivery module comprising a high voltage therapy delivery circuit, a high voltage short circuit protection circuit configured to terminate delivery of a high voltage pulse by the therapy delivery module in response to a short circuit condition, and a sensing module for detecting a need for a high voltage therapy. The device further includes a therapy control unit configured to control the therapy delivery module to deliver a shock pulse in response to detecting the need for the high voltage therapy. The control unit detects a termination of the high voltage pulse by the protection circuit; a truncated shock charge remaining on the high voltage therapy delivery circuit upon terminating the high voltage pulse. The control unit controls the therapy delivery module to deliver a next shock pulse at the remaining truncated shock charge.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: Medtronic, Inc.
    Inventors: David A. Casavant, Mark E. Gibbs, Bruce D. Gunderson, Robert A. Betzold
  • Publication number: 20110301656
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Application
    Filed: June 7, 2011
    Publication date: December 8, 2011
    Applicant: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 8060202
    Abstract: Pacing parameters are provided to address cross talk and intrinsic ventricular events occurring within a predefined blanking period following an atrial event. The parameters are used in conjunction with protocol for minimizing or reducing ventricular pacing, wherein ignoring intrinsic ventricular events during the blanking period might otherwise affect the performance of the protocol.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: November 15, 2011
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel, Steven R. Hornberger, Todd J. Sheldon, Douglas A. Peterson
  • Patent number: 7957800
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 7, 2011
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7953488
    Abstract: Multiple sensing configurations may be qualified based on one induced tachyarrhythmia, e.g., ventricular fibrillation, or other qualification event during an implantation procedure. Each sensing configuration comprises a different combination of two or more electrodes used for sensing electrical signals of the heart of the patient. In some examples, an implantable medical device or other device generates qualification information for each sensing configuration, which may indicate whether the sensing configuration is qualified for subsequent cardiac event detection based on an accuracy of the cardiac event detection for the sensing configuration during the qualification event. One of the qualified configurations may initially be selected as a primary sensing configuration for subsequent cardiac event detection. Switching to an alternate sensing configuration, e.g.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: May 31, 2011
    Assignee: Medtronic, Inc.
    Inventors: David Casavant, Catherine R. Condie, Jon W. Spence, Nathan Munsterman
  • Patent number: 7925345
    Abstract: An ADI/R mode is implemented using an intelligent pacing system to continually monitor ventricular response. This ensures AV conduction whenever possible so as to gain all the benefits of cardiac contractile properties resulting from native R-waves. In the event where AV conduction is blocked, the pacing mode is switched to a DDD/R mode to ensure a paced R-wave. Thereafter, subsequent to a completed interval of a p-wave, ADI/R pacing resumes to monitor ventricular response.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 12, 2011
    Assignee: Medtronic, Inc.
    Inventors: David Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7904157
    Abstract: Rate responsive pacing is limited in an atrial based pacing mode by the AV interval in order to avoid or minimize ventricular encroachment of atrial pacing. The AV or VA interval is used to permit rate responsiveness; modulate rate responsiveness or to determine a dynamic upper sensor rate.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 8, 2011
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul A. Belk
  • Patent number: 7881793
    Abstract: A pacing protocol is provided that reduces or minimizes ventricular pacing in favor of intrinsic conduction. When operating in a mode that provides ventricular pacing, a series of conduction checks are performed to determine if intrinsic conduction has returned. These conduction checks occur according to a predetermined pattern that general includes longer intervals between subsequent attempts. A maximum interval is provided such that conduction checks are not repeated sequentially at the same time of day when at this maximum interval.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 7738955
    Abstract: A pacing protocol is provided that reduces or minimizes ventricular pacing in favor of intrinsic conduction. When operating in a mode that provides ventricular pacing, a series of conduction checks are performed to determine if intrinsic conduction has returned. These conduction checks occur according to a predetermined pattern that generally includes longer intervals between subsequent attempts. The AV interval provided for dual chamber based pacing is modulated and generally moves from a larger value to a nominal value as the interval between unsuccessful conduction checks increases.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: June 15, 2010
    Assignee: Medtronic, Inc.
    Inventors: Michael O. Sweeney, David A. Casavant, Robert A. Betzold, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Publication number: 20100087882
    Abstract: Pacing parameters are provided to address cross talk and intrinsic ventricular events occurring within a predefined blanking period following an atrial event. The parameters are used in conjunction with protocol for minimizing or reducing ventricular pacing, wherein ignoring intrinsic ventricular events during the blanking period might otherwise affect the performance of the protocol.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Applicant: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel, Steven R. Hornberger, Todd J. Sheldon, Douglas A. Peterson
  • Publication number: 20100030289
    Abstract: Multiple sensing configurations may be qualified based on one induced tachyarrhythmia, e.g., ventricular fibrillation, or other qualification event during an implantation procedure. Each sensing configuration comprises a different combination of two or more electrodes used for sensing electrical signals of the heart of the patient. In some examples, an implantable medical device or other device generates qualification information for each sensing configuration, which may indicate whether the sensing configuration is qualified for subsequent cardiac event detection based on an accuracy of the cardiac event detection for the sensing configuration during the qualification event. One of the qualified configurations may initially be selected as a primary sensing configuration for subsequent cardiac event detection. Switching to an alternate sensing configuration, e.g.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Applicant: Medtronic, Inc.
    Inventors: David Casavant, Catherine R. Condie, Jon W. Spence, Nathan Munsterman
  • Patent number: 7599740
    Abstract: Pacing parameters are provided to address cross talk and intrinsic ventricular events occurring within a predefined blanking period following an atrial event. The parameters are used in conjunction with protocol for minimizing or reducing ventricular pacing, wherein ignoring intrinsic ventricular events during the blanking period might otherwise affect the performance of the protocol.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: October 6, 2009
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Betzold, David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel, Steven R. Hornberger, Todd J. Sheldon, Douglas A. Peterson
  • Patent number: 7587242
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: September 8, 2009
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Publication number: 20070299478
    Abstract: Rate responsive pacing is limited in an atrial based pacing mode by the AV interval in order to avoid or minimize ventricular encroachment of atrial pacing. The AV or VA interval is used to permit rate responsiveness; modulate rate responsiveness or to determine a dynamic upper sensor rate.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 27, 2007
    Inventors: David Casavant, Paul Belk
  • Patent number: 7277757
    Abstract: The invention is directed to an implantable medical device that stimulates a nerve associated with respiration. The nerve may, for example be a phrenic nerve, and the stimulation may cause a diaphragm of the patient to contract. The implantable medical device receives a signal that indicates a need for increased cardiac output and stimulates the nerve in response to the signal. The implantable medical device may receive such a signal by, for example, detecting a ventricular tachyarrhythmia, sensing a pressure that indicates a need for increased cardiac output, or receiving a signal from a patient via a patient activator. Stimulation of the nerve may increase cardiac output of a beating or defibrillating heart.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 2, 2007
    Assignee: Medtronic, Inc.
    Inventors: David A. Casavant, William J. Havel