Patents by Inventor David Caudillo

David Caudillo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942516
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 7527755
    Abstract: In one embodiment, a ferroelectric material is processed by placing the material in an environment including metal vapor and heating the material to a temperature below the Curie temperature of the material. This allows the bulk conductivity of the ferroelectric material to be increased without substantially degrading its ferroelectric domain properties. In one embodiment, the ferroelectric material comprises lithium tantalate and the metal vapor comprises zinc.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: May 5, 2009
    Assignee: Silicon Light Machines Corporation
    Inventors: Ronald O. Miles, Ludwig L. Galambos, Janos J. Lazar, Gabriel C. Risk, Alexei L. Alexandrovski, Gregory D. Miller, David Caudillo, Joseph M. McRae, Gisele L. Foulon
  • Publication number: 20050214469
    Abstract: In one embodiment, a ferroelectric material is processed by placing the material in an environment including metal vapor and heating the material to a temperature below the Curie temperature of the material. This allows the bulk conductivity of the ferroelectric material to be increased without substantially degrading its ferroelectric domain properties. In one embodiment, the ferroelectric material comprises lithium tantalate and the metal vapor comprises zinc.
    Type: Application
    Filed: May 9, 2005
    Publication date: September 29, 2005
    Inventors: Ronald Miles, Ludwig Galambos, Janos Lazar, Gabriel Risk, Alexei Alexandrovski, Gregory Miller, David Caudillo, Joseph McRae, Gisele Foulon
  • Publication number: 20050201926
    Abstract: In one embodiment, a ferroelectric material is processed by placing the material in an environment including metal vapor and heating the material to a temperature below the Curie temperature of the material. This allows the bulk conductivity of the ferroelectric material to be increased without substantially degrading its ferroelectric domain properties. In one embodiment, the ferroelectric material comprises lithium tantalate and the metal vapor comprises zinc.
    Type: Application
    Filed: May 9, 2005
    Publication date: September 15, 2005
    Inventors: Ronald Miles, Ludwig Galambos, Janos Lazar, Gabriel Risk, Alexei Alexandrovski, Gregory Miller, David Caudillo, Joseph McRae, Gisele Foulon
  • Patent number: 6932957
    Abstract: In one embodiment, a ferroelectric material is processed by placing the material in an environment including metal vapor and heating the material to a temperature below the Curie temperature of the material. This allows the bulk conductivity of the ferroelectric material to be increased without substantially degrading its ferroelectric domain properties. In one embodiment, the ferroelectric material comprises lithium tantalate and the metal vapor comprises zinc.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: August 23, 2005
    Assignee: Silicon Light Machines Corporation
    Inventors: Ronald O. Miles, Ludwig L. Galambos, Janos J. Lazar, Gabriel C. Risk, Alexei L. Alexandrovski, Gregory D. Miller, David Caudillo, Joseph M. McRae, Gisele L. Foulon
  • Publication number: 20040163596
    Abstract: In one embodiment, a ferroelectric material is processed by placing the material in an environment including metal vapor and heating the material to a temperature below the Curie temperature of the material. This allows the bulk conductivity of the ferroelectric material to be increased without substantially degrading its ferroelectric domain properties. In one embodiment, the ferroelectric material comprises lithium tantalate and the metal vapor comprises zinc.
    Type: Application
    Filed: June 28, 2002
    Publication date: August 26, 2004
    Inventors: Ronald O. Miles, Ludwig L. Galambos, Janos J. Lazar, Gabriel C. Risk, Alexei L. Alexandrovski, Gregory D. Miller, David Caudillo, Joseph M. McRae, Gisele L. Foulon
  • Patent number: 6095883
    Abstract: A method for uniformly depositing of polymer particles onto the surface of a gate metal during the formation of a gate electrode. In one embodiment, the present invention comprises immersing a substrate having a layer of a gate metal disposed over the surface thereof in a fluid bath containing polymer particles. In this embodiment, the fluid bath is contained within a fluid bath tank. Additionally, in the present embodiment, the layer of the gate metal disposed over the substrate has a thickness approximately the same as a desired thickness of the gate electrode to be formed. Next, the present embodiment applies a uniform potential across the surface of the layer of gate metal such that the polymer particles are uniformly deposited onto the layer of the gate metal. In so doing, the present embodiment uniformly deposits the polymer particles onto the layer of the gate metal.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: August 1, 2000
    Assignee: Candlescent Technologies Corporation
    Inventors: Philip J. Elizondo, Kishore K. Chakravorty, David Caudillo