Patents by Inventor David Condit

David Condit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10593978
    Abstract: A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, a catalyzed layer in at least one position selected from the group consisting of between the cathode and the membrane and between the anode and the membrane, and an edge seal positioned along an edge of the membrane electrode assembly, wherein the membrane and the catalyzed layer extends into the edge seal.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: March 17, 2020
    Assignee: AUDI AG
    Inventors: Ned E. Cipollini, David A. Condit, Sergei F. Burlatsky, Thomas H. Madden, Wayde R. Schmidt
  • Patent number: 9997794
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 12, 2018
    Assignee: Audi AG
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Patent number: 9455450
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system. The assembly components contain ionomer material which can be perfluorinated or non-perfluorinated, high temperature, hydrocarbon, and the like.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 27, 2016
    Assignee: Audi AG
    Inventors: Ned E. Cipollini, David A. Condit, Jared B. Hertzberg, Thomas D. Jarvi, James A. Leistra, Michael L. Perry, Sathya Motupally
  • Publication number: 20150380742
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system. The assembly components contain ionomer material which can be perfluorinated or non-perfluorinated, high temperature, hydrocarbon, and the like.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 31, 2015
    Inventors: Ned E. Cipollini, David A. Condit, Jared B. Hertzberg, Thomas D. Jarvi, James A. Leistra, Michael L. Perry, Sathya Motupally
  • Publication number: 20150349362
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Application
    Filed: April 1, 2015
    Publication date: December 3, 2015
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Patent number: 9118081
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system. The assembly components contain ionomer material which can be perfluorinated or non-perfluorinated, high temperature, hydrocarbon, and the like.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: August 25, 2015
    Assignee: Audi AG
    Inventors: Ned E. Cipollini, David A. Condit, Jared B. Hertzberg, Thomas D. Jarvi, James A. Leistra, Michael L. Perry, Sathya Motupally
  • Patent number: 9023551
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: May 5, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Publication number: 20110244340
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system. The assembly components contain ionomer material which can be perfluorinated or non-perfluorinated, high temperature, hydrocarbon, and the like.
    Type: Application
    Filed: December 28, 2004
    Publication date: October 6, 2011
    Applicant: UTC POWER CORPORATION
    Inventors: Ned E. Cipollini, Jared B. Hertzberg, David A. Condit, Thomas D. Jarvi, James A. Leistra, Motupally Sathya, Michael L. Perry
  • Publication number: 20110020727
    Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.
    Type: Application
    Filed: January 3, 2008
    Publication date: January 27, 2011
    Applicant: UTC POWER CORPORATION
    Inventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
  • Publication number: 20100092815
    Abstract: A membrane electrode assembly includes an anode; a cathode; a membrane between the anode and the cathode and having a thickness defined between the anode and the cathode; and a catalyst diffusion barrier layer in a location bounded on one side by an interface between the membrane and the cathode, and bounded on the other side by a plane approximately 50% of the thickness of the membrane from the cathode. A method of manufacture is also provided.
    Type: Application
    Filed: April 30, 2007
    Publication date: April 15, 2010
    Applicant: UTC POWER CORPORATION
    Inventors: David A. Condit, Sergei F. Burlatsky, Ned E. Cipollini, Thomas H. Madden, Sathya Motupally
  • Patent number: 7473485
    Abstract: A membrane electrode assembly includes an anode; a cathode; a membrane disposed between the anode and the cathode; and an extended catalyzed layer between the membrane and at least one electrode of the anode and the cathode. The extended catalyzed layer includes catalyst particles embedded in membrane material and preferably includes a first plurality of particles which are electrically connected to the at least one electrode. The extended catalyzed layer may further preferably have a second plurality of particles which are electrically disconnected from the at least one electrode.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 6, 2009
    Assignee: UTC Power Corporation
    Inventors: Sergei F. Burlatsky, Jared B Hertzberg, Ned E. Cipollini, David A. Condit, Thomas D. Jarvi, James A. Leistra, Michael L. Perry, Thomas H. Madden
  • Publication number: 20080096090
    Abstract: A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, a catalyzed layer in at least one position selected from the group consisting of between the cathode and the membrane and between the anode and the membrane, and an edge seal positioned along an edge of the membrane electrode assembly, wherein the membrane and the catalyzed layer extends into the edge seal.
    Type: Application
    Filed: December 28, 2004
    Publication date: April 24, 2008
    Applicant: UTC POWER CORPORATION
    Inventors: Ned Cipollini, David Condit, Sergei Burlatsky, Thomas Madden, Wayde Schmidt
  • Patent number: 7282285
    Abstract: A cell stack assembly (102) coolant system comprises a coolant exhaust conduit (110) in fluid communication with a coolant exhaust manifold (108) and a coolant pump (112). A coolant inlet conduit (120) enables transportation of the coolant to the coolant inlet manifold. The coolant system further includes a bypass conduit (132) in fluid communication with the coolant exhaust manifold and the coolant inlet manifold, while a bleed valve (130) is in fluid communication with the coolant exhaust conduit and a source of gas. Operation of the bleed valve enables venting of the coolant from the coolant channels, and through a shut down conduit (124). An increased pressure differential between the coolant and reactant gases forces water out of the pores in the electrode substrates (107,109). An ejector (250) prevents air form inhibiting the pump. Pulsed air is blown (238,239,243,245) through the coolant channels to remove more water.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: October 16, 2007
    Assignee: UTC Fuel Cells, LLC
    Inventors: Harold T. Couch, Carl A. Reiser, Gennady Resnick, Deliang Yang, Emily A. Dykeman, David A. Condit
  • Patent number: 7112386
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of the anode, the cathode, a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: September 26, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Ned E. Cipollini, David A. Condit, Jared B. Hertzberg, Thomas D. Jarvi, James A. Leistra, Michael L. Perry
  • Publication number: 20040224216
    Abstract: A membrane electrode assembly includes an anode; a cathode; a membrane disposed between the anode and the cathode; and an extended catalyzed layer between the membrane and at least one electrode of the anode and the cathode. The extended catalyzed layer includes catalyst particles embedded in membrane material and preferably includes a first plurality of particles which are electrically connected to the at least one electrode. The extended catalyzed layer may further preferably have a second plurality of particles which are electrically disconnected from the at least one electrode.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 11, 2004
    Inventors: Sergei F. Burlatsky, Jared B. Hertzberg, Ned E. Cipollini, David A. Condit, Thomas D. Jarvi, James A. Leistra, Michael L. Perry, Thomas H. Madden
  • Patent number: 6794073
    Abstract: A direct antifreeze cooled fuel cell is disclosed for producing electrical energy from reducing and process oxidant fluid streams that includes an electrolyte secured between an anode catalyst and a cathode catalyst; a porous anode substrate secured in direct fluid communication with and supporting the anode catalyst; a porous wetproofed cathode substrate secured in direct fluid communication with and supporting the cathode catalyst; a porous water transport or cooler plate secured in direct fluid communication with the porous cathode substrate; and, a direct antifreeze solution passing through the porous water transport plate. A preferred direct antifreeze solution passing through the porous water transport plate remains essentially within the water transport plate and does not poison the catalysts.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 21, 2004
    Assignee: International Fuel Cells, LLC
    Inventors: Richard D. Breault, David A. Condit, Albert P. Grasso, Michael E. Gorman
  • Publication number: 20040043283
    Abstract: A membrane electrode assembly includes an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and a peroxide decomposition catalyst positioned in at least one position selected from the group consisting of the anode, the cathode, a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 4, 2004
    Inventors: Ned E. Cipollini, David A. Condit, Jared B. Hertzberg, Thomas D. Jarvi, James A. Leistra, Michael L. Perry
  • Patent number: 6635370
    Abstract: A fuel cell system is shut down by disconnecting the primary load, shutting off the air flow, and controlling the fuel flow into the system (including shutting off the fuel flow) and the gas flow out of the system in a manner that results in the fuel cell gases coming to equilibrium across the cells at a gas composition of at least 0.0001% hydrogen (by volume), and preferably between 1.0% and less than 4.0% hydrogen, by volume, with a balance of nitrogen and possibly other gases inert and harmless to the fuel cell, all the oxygen having been consumed by reacting with the hydrogen within the cell. That gas composition is maintained within the cells throughout shut-down, such as by adding hydrogen to replace any that is consumed by reaction with air leaking into the cells during the period of shut-down. This shut-down procedure causes virtually no cell performance losses.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: October 21, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: David A. Condit, Richard D. Breault
  • Patent number: 6596426
    Abstract: A coolant system is proposed for addressing temperature concerns during start-up and shut-down of a cell stack assembly. The coolant system comprises a coolant exhaust conduit in fluid communication with a coolant exhaust manifold and a coolant pump, the coolant exhaust conduit enabling transportation of exhausted coolant away from a coolant exhaust manifold. A coolant return conduit is provided to be in fluid communication with a coolant inlet manifold and a coolant pump, the coolant return conduit enabling transportation of the coolant to the coolant inlet manifold. The coolant system further includes a bypass conduit in fluid communication with the coolant exhaust conduit and the coolant return conduit, while a bleed valve is in fluid communication with the coolant exhaust conduit and a gaseous stream. Operation of the bleed valve enables venting of the coolant from the coolant channels, and through said bypass conduit.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: July 22, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Deliang Yang, Emily A. Ballinger, David A. Condit
  • Patent number: 6562503
    Abstract: The invention is a freeze tolerant fuel cell power plant that includes at least one fuel cell and a water transport plate secured within the fuel cell having a coolant inlet and a coolant outlet that direct a water coolant through the plate. A suction water displacement system includes a freeze tolerant accumulator secured to the coolant inlet and a vacuum separator secured to the coolant outlet having a suction generating eductor secured to the separator. Control valves and a coolant pump selectively direct either the water coolant, heated, or unheated water immiscible fluid to cycle from the accumulator, through the coolant inlet, water transport plate, coolant outlet, vacuum separator and back to the accumulator in order to permit operation and storage of the plant in sub-freezing ambient temperatures.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 13, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Albert P. Grasso, David A. Condit