Patents by Inventor David D. Djayaprawira

David D. Djayaprawira has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8934290
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: January 13, 2015
    Assignees: Canon Anelva Corporation, National Institute of Advanced Industrial Science Nad Technology
    Inventors: David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa
  • Publication number: 20140024140
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Application
    Filed: September 20, 2013
    Publication date: January 23, 2014
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, CANON ANELVA CORPORATION
    Inventors: David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa
  • Patent number: 8540852
    Abstract: Disclosed are method and apparatus for manufacturing a magnetoresistive device which are suitable for manufacturing a high-quality magnetoresistive device by reducing damages caused during the processing of a multilayer magnetic film as a component of the magnetoresistive device, thereby preventing deterioration of magnetic characteristics due to such damages. Specifically disclosed is a method for manufacturing a magnetoresistive device, which includes processing a multilayer magnetic film by performing a reactive ion etching on a substrate which is provided with the multilayer magnetic film as a component of the magnetoresistive device. This method for manufacturing a magnetoresistive device includes irradiating the multilayer magnetic film with an ion beam after the reactive ion etching.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: September 24, 2013
    Assignee: Canon Anelva Corporation
    Inventors: Naoki Watanabe, Yoshimitsu Kodaira, David D. Djayaprawira, Hiroki Maehara
  • Patent number: 8394649
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: March 12, 2013
    Assignees: Canaon Anelva Corporation, National Institute of Advanced Industrial Science and Technology
    Inventors: David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa
  • Publication number: 20110094875
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Application
    Filed: January 3, 2011
    Publication date: April 28, 2011
    Applicants: CANON ANELVA CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa
  • Patent number: 7813088
    Abstract: A magnetoresistance effect device has a fixed ferromagnetism layer, a free ferromagnetism layer, and a barrier layer sandwiched by these ferromagnetic layers. It is constituted so that CoFeB whose amount of addition of boron B (b: atomic %) is 21%?b?23% may be used for the free ferromagnetism layer. In the magnetic resistance effect element, a magnetostrictive constant does not change steeply near the magnetostrictive constant zero. A MR ratio is maintained to be high.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: October 12, 2010
    Assignee: Canon Anelva Corporation
    Inventors: Koji Tsunekawa, David D. Djayaprawira
  • Publication number: 20100155231
    Abstract: Disclosed are method and apparatus for manufacturing a magnetoresistive device which are suitable for manufacturing a high-quality magnetoresistive device by reducing damages caused during the processing of a multilayer magnetic film as a component of the magnetoresistive device, thereby preventing deterioration of magnetic characteristics due to such damages. Specifically disclosed is a method for manufacturing a magnetoresistive device, which includes processing a multilayer magnetic film by performing a reactive ion etching on a substrate which is provided with the multilayer magnetic film as a component of the magnetoresistive device. This method for manufacturing a magnetoresistive device includes irradiating the multilayer magnetic film with an ion beam after the reactive ion etching.
    Type: Application
    Filed: September 13, 2006
    Publication date: June 24, 2010
    Applicant: Canon ANELVA Corporation
    Inventors: Naoki Watanabe, Yoshimitsu Kodaira, David D. Djayaprawira, Hiroki Maehara
  • Publication number: 20090046395
    Abstract: A magnetoresistive effect thin-film magnetic head including a magnetoresistive effect element having a CPP structure in which the gap length can be precisely optimized and a method for fabricating the magnetoresistive effect thin-film magnetic head are provided. The stacked magnetoresistive effect thin-films having the cap layer as the top layer are formed on the bottom shield layer. The soft magnetic layer consisting of any soft magnetic material is then formed on the cap layer, and the micro fabrication process is performed. Subsequently, at least one insulating layer is formed on the stacked magnetoresistive effect thin-films after the micro fabrication process, having the cap layer as the top layer, on which the soft magnetic layer is formed. Then, the soft magnetic layer is exposed by removing a part of the insulating layer formed on the soft magnetic layer and the top shield layer is formed on the surface of the exposed soft magnetic layer.
    Type: Application
    Filed: February 23, 2007
    Publication date: February 19, 2009
    Applicant: Canon ANELVA Corporation
    Inventors: Hiroki Maehara, David D. Djayaprawira, Naoki Watanabe
  • Publication number: 20080278865
    Abstract: A magnetoresistive element includes an antiferromagnetic layer formed from a layer containing manganese, a layered magnetization fixed layer which includes a first magnetization fixed layer located over a side of the antiferromagnetic layer and formed from a layer containing a ferromagnetic material and a platinum group metal, a second magnetization fixed layer formed from a layer containing a ferromagnetic material, and a first nonmagnetic intermediate layer located between the first magnetization fixed layer and the second magnetization fixed layer, a magnetic free layer formed from a layer containing a ferromagnetic material, and a second nonmagnetic intermediate layer located between the layered magnetization fixed layer and the magnetic free layer.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 13, 2008
    Applicant: CANON ANELVA CORPORATION
    Inventors: Koji Tsunekawa, David D. Djayaprawira
  • Publication number: 20080180862
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 31, 2008
    Applicants: ANELVA CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: David D. DJAYAPRAWIRA, Koji TSUNEKAWA, Motonobu NAGAI, Hiroki MAEHARA, Shinji YAMAGATA, Naoki WATANABE, Shinji YUASA
  • Publication number: 20080124454
    Abstract: A magnetoresistance effect device including a multilayer structure having a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least one ferromagnetic layer has at least the part contacting the barrier layer made amorphous and the barrier layer is an MgO layer having a highly oriented texture structure.
    Type: Application
    Filed: January 3, 2008
    Publication date: May 29, 2008
    Applicants: ANELVA CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: David D. Djayaprawira, Koji Tsunekawa, Motonobu Nagai, Hiroki Maehara, Shinji Yamagata, Naoki Watanabe, Shinji Yuasa