Patents by Inventor David Daycock

David Daycock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091009
    Abstract: Some embodiments include a memory device having a conductive structure which includes silicon-containing material. A stack is over the conductive structure and includes alternating insulative levels and conductive levels. Channel material pillars extend through the stack and are electrically coupled with the conductive structure. Memory cells are along the channel material pillars. A conductive barrier material is under the silicon-containing material. The conductive barrier material includes one or more metals in combination with one or more nonmetals. An electrical contact is under the conductive barrier material. The electrical contact includes a region reactive with silicon. Silicon is precluded from reaching said region at least in part due to the conductive barrier material. Control circuitry is under the electrical contact and is electrically coupled with the conductive structure through at least the electrical contact and the conductive barrier material.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Devesh Kumar Datta, David Daycock, Keen Wah Chow, Tom George, Justin B. Dorhout, Bingli Ma, Rita J. Klein, John Mark Meldrim
  • Patent number: 10923492
    Abstract: A method that is part of a method of forming an elevationally-extending string of memory cells comprises forming an intervening structure that is elevationally between upper and lower stacks that respectively comprise alternating tiers comprising different composition materials. The intervening structure is formed to comprise an elevationally-extending-dopant-diffusion barrier and laterally-central material that is laterally inward of the dopant-diffusion barrier and has dopant therein. Some of the dopant is thermally diffused from the laterally-central material into upper-stack-channel material. The dopant-diffusion barrier during the thermally diffusing is used to cause more thermal diffusion of said dopant into the upper-stack-channel material than diffusion of said dopant, if any, into lower-stack-channel material. Other embodiments, including structure independent of method, are disclosed.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: February 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, David Daycock
  • Publication number: 20210043644
    Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. The TAV region comprises spaced operative TAV areas. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region laterally outside of and not within the operative TAV areas. Operative TAVs are formed in individual of the spaced operative TAV areas in the TAV region. Other methods and structure independent of method are disclosed.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 11, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Yi Hu, Merri L. Carlson, Anilkumar Chandolu, Indra V. Chary, David Daycock, Harsh Narendrakumar Jain, Matthew J. King, Jian Li, Brett D. Lowe, Prakash Rau Mokhna Rau, Lifang Xu
  • Publication number: 20210013221
    Abstract: A method used in forming a memory array comprising strings of memory cells and operative through-array-vias (TAVs) comprises forming a stack comprising vertically-alternating insulative tiers and conductive tiers. The stack comprises a TAV region and an operative memory-cell-string region. Operative channel-material strings are formed in the stack in the operative memory-cell-string region and dummy channel-material strings are formed in the stack in the TAV region. At least a majority of channel material of the dummy channel-material strings is replaced in the TAV region with insulator material and operative TAVs are formed in the TAV region. Other methods and structures independent of method are disclosed.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 14, 2021
    Applicant: Micron Technology, Inc.
    Inventors: David Daycock, Prakash Rau Mokhna Rau
  • Publication number: 20200350333
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Publication number: 20200321347
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 10790290
    Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: David A. Daycock, Purnima Narayanan, John Hopkins, Guoxing Duan, Barbara L. Casey, Christopher J. Larsen, Meng-Wei Kuo, Qian Tao
  • Publication number: 20200279867
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 10762939
    Abstract: Computer memory technology is disclosed. In one example, a method for isolating computer memory blocks in a memory array from one another can include forming an opening between adjacent blocks of memory structures. The method can also include forming a protective liner layer on at least the memory structures. The method can further include disposing isolating material in the opening and on the protective liner layer. The method can even further include removing the isolating material on the protective liner layer. The method can additionally include removing the protective liner layer on the memory structures. Associated devices and systems are also disclosed.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: September 1, 2020
    Assignee: Intel Corporation
    Inventors: Christopher J. Larsen, David A. Daycock, Qian Tao, Saniya Rathod, Devesh K. Datta, Srivardhan Gowda, Rithu K. Bhonsle
  • Patent number: 10748921
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Patent number: 10734395
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 4, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 10658380
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 19, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 10658382
    Abstract: An elevationally-extending string of memory cells comprises an upper stack elevationally over a lower stack. The upper and lower stacks individually comprise vertically-alternating tiers comprising control gate material of individual charge storage field effect transistors vertically alternating with insulating material. An upper stack channel pillar extends through multiple of the vertically-alternating tiers in the upper stack and a lower stack channel pillar extends through multiple of the vertically-alternating tiers in the lower stack. Tunnel insulator, charge storage material, and control gate blocking insulator is laterally between the respective upper and lower stack channel pillars and the control gate material. A conductive interconnect comprising conductively-doped semiconductor material is elevationally between and electrically couples the upper and lower stack channel pillars together. The conductively-doped semiconductor material comprises a first conductivity-producing dopant.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: May 19, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John D. Hopkins, David Daycock, Yushi Hu, Christopher Larsen, Dimitrios Pavlopoulos
  • Publication number: 20200135751
    Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 30, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Liu Liu, David Daycock, Rithu K. Bhonsle, Giovanni Mazzone, Narula Bilik, Jordan D. Greenlee, Minsoo Lee, Benben Li
  • Publication number: 20200119036
    Abstract: A termination opening can be formed through the stack alternating dielectrics concurrently with forming contact openings through the stack. A termination structure can be formed in the termination opening. An additional opening can be formed through the termination structure and through the stack between groups of semiconductor structures that pass through the stack. In another example, an opening can be formed through the stack so that a first segment of the opening is between groups of semiconductor structures in a first region of the stack and a second segment of the opening is in a second region of the stack that does not include the groups of semiconductor structures. A material can be formed in the second segment so that the first segment terminates at the material. In some instances, the material can be implanted in the dielectrics in the second region through the second segment.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Publication number: 20200119040
    Abstract: In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Inventors: Matthew J. King, Anilkumar Chandolu, Indra V. Chary, Darwin A. Clampitt, Gordon Haller, Thomas George, Brett D. Lowe, David A. Daycock
  • Patent number: 10608003
    Abstract: Integrated circuitry has an array circuitry region having a repeating array of electronic components. An adjacent circuitry region is immediately laterally adjacent to and contacts one elongated major peripheral side of the array circuitry region. The adjacent circuitry region is distinct in structure from the array circuitry region where contacting the array circuitry region and distinct in operation from the array circuitry region. The array circuitry region and the adjacent circuitry region have a respective longitudinally non-linear edge at an interface relative one another along the one elongated major peripheral side of the array circuitry region. Other embodiments are disclosed.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: March 31, 2020
    Assignee: Micron Technology, Inc.
    Inventor: David Daycock
  • Publication number: 20200058663
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Patent number: 10541252
    Abstract: Some embodiments include a memory array which has a vertical stack of alternating insulative levels and wordline levels. The wordline levels have terminal ends corresponding to control gate regions. Charge-trapping material is along the control gate regions of the wordline levels and not along the insulative levels. The charge-trapping material is spaced from the control gate regions by charge-blocking material. Channel material extends vertically along the stack and is laterally spaced from the charge-trapping material by dielectric material. Some embodiments include methods of forming NAND memory arrays.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 21, 2020
    Assignee: Micron Technology, Inc.
    Inventors: David Daycock, Richard J. Hill, Christopher Larsen, Woohee Kim, Justin B. Dorhout, Brett D. Lowe, John D. Hopkins, Qian Tao, Barbara L. Casey
  • Publication number: 20200013802
    Abstract: Some embodiments include an integrated structure having a vertical stack of alternating insulative levels and conductive levels. The conductive levels include primary regions of a first vertical thickness, and terminal projections of a second vertical thickness which is greater than the first vertical thickness. Charge-blocking material is adjacent the terminal projections. Charge-storage material is adjacent the charge-blocking material. Gate-dielectric material is adjacent the charge-storage material. Channel material is adjacent the gate-dielectric material. Some embodiments include NAND memory arrays. Some embodiments include methods of forming integrated structures.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Applicant: Micron Technology, Inc.
    Inventors: John D. Hopkins, David Daycock