Patents by Inventor David Duarte

David Duarte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085796
    Abstract: An extreme ultraviolet radiation (EUV) source, including: a vessel having an inner vessel wall and an intermediate focus (IF) region; an EUV collector disposed inside the vessel, the EUV collector including a reflective surface configured to reflect EUV radiation toward the intermediate focus region, the reflective surface configured to directionally face the IF region of the vessel; a showerhead disposed along at least a portion of the inner vessel wall, the showerhead including a plurality of nozzles configured to introduce gas into the vessel; and one or more exhausts configured to remove gas introduced into the vessel, the one or more exhausts being oriented along at least a portion of the inner vessel wall so that the gas is caused to flow away from the EUV collector.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 14, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Dzmitry LABETSKI, Christianus Wilhelmus Johannes BERENDSEN, Rui Miguel DUARTE RODRIGUES NUNES, Alexander Igorevich ERSHOV, Kornelis Frits FEENSTRA, Igor Vladimirovich FOMENKOV, Klaus Martin HUMMLER, Arun JOHNKADAKSHAM, Matthias KRAUSHAAR, Andrew David LAFORGE, Marc Guy LANGLOIS, Maksim LOGINOV, Yue MA, Seyedmohammad MOJAB, Kerim NADIR, Alexander SHATALOV, John Tom STEWART, Henricus Gerardus TEGENBOSCH, Chunguang XIA
  • Publication number: 20220097050
    Abstract: Provided herein are devices and methods of processing a sample that include, in several embodiments, rotating one or more microfluidic chips that are mounted on a support plate using a motor driven rotational chuck. By spinning one or more of the microfluidic chips about a common center of rotation in a controlled manner, high flow rates (and high shear forces) are imparted to the sample in a controlled manner. Each microfluidic chip can be rotated 180° on the support plate so that the sample can be run back-and-forth through the microfluidic devices. Because the support plate can be driven at relatively high RPMs, high flow rates are generated within the microfluidic chips. This increases the shear forces on the sample and also decreases the processing time involved as the sample can quickly pass through the shear-inducing features of the microfluidic chip(s).
    Type: Application
    Filed: August 26, 2021
    Publication date: March 31, 2022
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ahmed Zobi, Justin Stovner, Hugo Salas, David Duarte, Jered Haun, Alan Widgerow, Derek Banyard
  • Publication number: 20220100221
    Abstract: A low power hybrid reverse (LPHR) bandgap reference (BGR) and digital temperature sensor (DTS) or a digital thermometer, which utilizes subthreshold metal oxide semiconductor (MOS) transistor and the PNP parasitic Bi-polar Junction Transistor (BJT) device to form a reverse BGR that serves as the base for configurable BGR or DTS operating modes. The LPHR architecture uses low-cost MOS transistors and the standard parasitic PNP device. Based on a reverse bandgap voltage, the LPHR can work as a configurable BGR. By comparing the configurable BGR with the scaled base-emitter voltage, the circuit can also perform as a DTS with a linear transfer function with single-temperature trim for high accuracy.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: You Li, David Duarte, Yongping Fan
  • Patent number: 11130127
    Abstract: Provided herein are devices and methods of processing a sample that include, in several embodiments, rotating one or more microfluidic chips that are mounted on a support plate using a motor driven rotational chuck. By spinning one or more of the microfluidic chips about a common center of rotation in a controlled manner, high flow rates (and high shear forces) are imparted to the sample in a controlled manner. Each microfluidic chip can be rotated 180° on the support plate so that the sample can be run back-and-forth through the microfluidic devices. Because the support plate can be driven at relatively high RPMs, high flow rates are generated within the microfluidic chips. This increases the shear forces on the sample and also decreases the processing time involved as the sample can quickly pass through the shear-inducing features of the microfluidic chip(s).
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: September 28, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ahmed Zobi, Justin Stovner, Hugo Salas, David Duarte, Jered Haun, Alan Widgerow, Derek Banyard
  • Publication number: 20200164374
    Abstract: Provided herein are devices and methods of processing a sample that include, in several embodiments, rotating one or more microfluidic chips that are mounted on a support plate using a motor driven rotational chuck. By spinning one or more of the microfluidic chips about a common center of rotation in a controlled manner, high flow rates (and high shear forces) are imparted to the sample in a controlled manner. Each microfluidic chip can be rotated 180° on the support plate so that the sample can be run back-and-forth through the microfluidic devices. Because the support plate can be driven at relatively high RPMs, high flow rates are generated within the microfluidic chips. This increases the shear forces on the sample and also decreases the processing time involved as the sample can quickly pass through the shear-inducing features of the microfluidic chip(s).
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ahmed Zobi, Justin Stovner, Hugo Salas, David Duarte, Jered Haun, Alan Widgerow, Derek Banyard
  • Patent number: 10589268
    Abstract: Provided herein are devices and methods of processing a sample that include, in several embodiments, rotating one or more microfluidic chips that are mounted on a support plate using a motor driven rotational chuck. By spinning one or more of the microfluidic chips about a common center of rotation in a controlled manner, high flow rates (and high shear forces) are imparted to the sample in a controlled manner. Each microfluidic chip can be rotated 180° on the support plate so that the sample can be run back-and-forth through the microfluidic devices. Because the support plate can be driven at relatively high RPMs, high flow rates are generated within the microfluidic chips. This increases the shear forces on the sample and also decreases the processing time involved as the sample can quickly pass through the shear-inducing features of the microfluidic chip(s).
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 17, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ahmed Zobi, Justin Stovner, Hugo Salas, David Duarte, Jered Haun, Alan Widgerow, Derek Banyard
  • Publication number: 20180361382
    Abstract: Provided herein are devices and methods of processing a sample that include, in several embodiments, rotating one or more microfluidic chips that are mounted on a support plate using a motor driven rotational chuck. By spinning one or more of the microfluidic chips about a common center of rotation in a controlled manner, high flow rates (and high shear forces) are imparted to the sample in a controlled manner. Each microfluidic chip can be rotated 180° on the support plate so that the sample can be run back-and-forth through the microfluidic devices. Because the support plate can be driven at relatively high RPMs, high flow rates are generated within the microfluidic chips. This increases the shear forces on the sample and also decreases the processing time involved as the sample can quickly pass through the shear-inducing features of the microfluidic chip(s).
    Type: Application
    Filed: August 10, 2018
    Publication date: December 20, 2018
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ahmed Zobi, Justin Stovner, Hugo Salas, David Duarte, Jered Haun, Alan Widgerow, Derek Banyard
  • Patent number: 7512514
    Abstract: An embodiment of the present invention is a technique for thermal sensing. A sensing structure generates a response according to a local temperature at a first location on a die. A sensor core coupled to the sensing structure via routing lines to provide a measurement of the local temperature from the response. The sensor core is located at a second location remote to the first location and is powered by an analog supply voltage source located in a vicinity of the second location.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 31, 2009
    Assignee: Intel Corporation
    Inventors: David Duarte, George Geannopoulos, Usman Mughal, Venkatesh Prasanna, Kedar Mangrulkar, Mathew Nazareth
  • Patent number: 7498892
    Abstract: A voltage-controlled oscillator (VCO) of ring-connected stages, where each stage in the VCO has a first set of differential inverters biased by variable bias voltages, and a second set of differential inverters biased by fixed bias voltages. The differential inverters in each stage are connected in parallel with each other. Each set of differential inverters in a stage may contain only one differential inverter. The variable bias voltages are provided by charge pumps and associated circuits as used in well-known self-biasing schemes for phase locked loops. The fixed bias voltages are provided by a biasing circuit, matched to the circuits associated with the charge pumps, but where a fixed control voltage is applied to provide the fixed bias voltages.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: March 3, 2009
    Assignee: Intel Corporation
    Inventors: Keng L. Wong, Mingwei Huang, David Duarte, Shuching Hsu
  • Publication number: 20080231382
    Abstract: A voltage-controlled oscillator (VCO) of ring-connected stages, where each stage in the VCO has a first set of differential inverters biased by variable bias voltages, and a second set of differential inverters biased by fixed bias voltages. The differential inverters in each stage are connected in parallel with each other. Each set of differential inverters in a stage may contain only one differential inverter. The variable bias voltages are provided by charge pumps and associated circuits as used in well-known self-biasing schemes for phase locked loops. The fixed bias voltages are provided by a biasing circuit, matched to the circuits associated with the charge pumps, but where a fixed control voltage is applied to provide the fixed bias voltages.
    Type: Application
    Filed: March 14, 2007
    Publication date: September 25, 2008
    Inventors: Keng L. Wong, Mingwei Huang, David Duarte, Shuching Hsu
  • Publication number: 20080082282
    Abstract: An embodiment of the present invention is a technique for thermal sensing. A sensing structure generates a response according to a local temperature at a first location on a die. A sensor core coupled to the sensing structure via routing lines to provide a measurement of the local temperature from the response. The sensor core is located at a second location remote to the first location and is powered by an analog supply voltage source located in a vicinity of the second location.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: David Duarte, George Geannopoulos, Usman Mughal, Venkatesh Prasanna, Kedar Mangrulkar, Mathew Nazareth
  • Publication number: 20070216468
    Abstract: In one embodiment, an apparatus is constituted with a temperature sensing circuit adapted to be coupled to a current sources circuit, and configured to measure a circuit temperature and to generate a temperature-indicating signal in response to the circuit temperature and an adjustable current output by the current sources circuit; a reference voltage circuit to be coupled the current sources circuit and configured to provide a reference signal in response to a reference current output by the current sources circuit; and a trip generator circuit coupled to the temperature sensing circuit and the reference voltage circuit and configured to generate a trip point signal if a difference between the reference and the temperature-indicating signals indicates that a threshold circuit temperature has been reached or exceeded.
    Type: Application
    Filed: March 6, 2006
    Publication date: September 20, 2007
    Inventor: David Duarte