Patents by Inventor David E. Euler

David E. Euler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9375578
    Abstract: A method and apparatus is provided for determining whether a current atrial-ventricular (AV) delay during cardiac pacing is appropriate for proper mechanical coupling of the atrium and ventricle. If proper mechanical coupling is determined to not exist, an additional atrial contraction is induced within the same ventricular cycle to maintain atrial-ventricular mechanical coupling.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: June 28, 2016
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, Todd Jon Sheldon, Paul D. Ziegler, David E. Euler
  • Patent number: 9370654
    Abstract: An implantable medical device and associated method deliver a therapy to an autonomic nerve. The therapy delivery includes delivering therapeutic low frequency (LF) electrical stimulation pulses to the autonomic nerve and delivering a high frequency electrical signal to the autonomic nerve during the LF frequency stimulation pulse delivery. The high frequency stimulation signal blocks activation of autonomic nerve fibers innervating a non-targeted tissue during the therapeutic LF stimulation pulse delivery.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: June 21, 2016
    Assignee: Medtronic, Inc.
    Inventors: Avram Scheiner, David E. Euler
  • Patent number: 9149638
    Abstract: A method of controlling pulmonary capillary pressure is disclosed which includes increasing the output of a first ventricle (V1) (e.g., a left ventricle) relative to second ventricle (e.g., right ventricle) by increasing the magnitude of a post extrasystolic potentiation (PESP) therapy effect in the first ventricle relative to the magnitude of a PESP therapy effect produced in the second ventricle. In certain embodiments of the invention, this may be accomplished by adjusting the extra-stimulus interval (ESI) in either or both of the left ventricle and the right ventricle, for example.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: October 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: Dwight H. Warkentin, David E. Euler
  • Patent number: 9101772
    Abstract: A method of stimulation therapy and an apparatus for providing the therapy which addresses cardiac dysfunction including heart failure. The therapy employs atrial pacing pulses delivered to a heart after the atrial refractory period and timed so that they will not cause a ventricular contraction. These atrial pacing are timed to achieve beneficial effects on myocardial mechanics (efficacy) while maintaining an extremely low level of risk of arrhythmia induction. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 11, 2015
    Assignee: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
  • Patent number: 8700155
    Abstract: An implantable medical device (IMD) having a therapy circuit for delivering atrial pacing and a control circuit for detecting a return to sinus rhythm. The control circuit determines the duration of an atrial arrhythmia preceding the return to sinus rhythm, and controls the therapy circuit to deliver transient atrial pacing based on the atrial arrhythmia duration.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, David E. Euler
  • Patent number: 8478406
    Abstract: Refractory period stimulation (RPS) disclosed herein includes apparatus and methods to enhance cardiac performance by delivering monophasic stimulation pulses during the refractory period. The disclosure describes several system level improvements to RPS that include one or more of the following: (i) Delivery of RPS therapy pulses at multiple sites in an automatically alternating way to avoid increasing demand at any one location for prolonged periods of time. (ii) Delivery of RPS therapy pulses at multiple sites to determine one or more optimal electrode configurations for chronic RPS therapy delivery. (iii) Use of separate electrode(s) for sensing ventricular activity to properly time and adjust the application of RPS thereby avoiding limitations associated with electrode polarization that occurs due to the amount of energy delivered during the RPS. (iv) Use of a relatively long active recharge pulse at the RPS stimulation electrodes to remove the undesirable effects of polarization.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: July 2, 2013
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, David E. Euler
  • Publication number: 20120303084
    Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
  • Patent number: 7835789
    Abstract: Implantable pulse generators (IPGs) are adapted to deliver stimulation to refractory myocardial tissue. An IPG nominally delivers one to six monophasic stimulation pulses. Because monophasic stimulation tends to accumulate polarization, a programmable blanking period of between about 20 milliseconds (ms) and about 300 ms is implemented (subsequent to delivery of the last pulse in a RPS pulse train) to allow recovery from polarization. The stimulation pulse width is about 0.03 ms to about 1.6 ms and voltage amplitude of 0.5 volts to 8 volts at about 50 Hz. The amplitude of electrical current of the stimulation pulses is less than or equal to approximately 50 milliamps. The pulses are delivered to multiple sites within a cardiac chamber and device performance and/or diagnostic information can be stored within a memory structure and reviewed to confirm delivery of a desired therapy regimen.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: November 16, 2010
    Assignee: Medtronic, Inc.
    Inventor: David E. Euler
  • Patent number: 7792581
    Abstract: Methods and systems for treating patients with diastolic heart failure (DHF) are disclosed which include slowing a patient's heart rate below its intrinsic rate, and controlling the rate using cardiac pacing therapy to improve LV filling and cardiac output. In certain embodiments, a pacing treatment rate may be determined by adjusting an adaptive rate by an amount determined by evaluating one or more patient parameters.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, Lawrence J. Mulligan, David E. Euler
  • Publication number: 20100191311
    Abstract: An implantable medical device and associated method deliver a therapy to an autonomic nerve. The therapy delivery includes delivering therapeutic low frequency (LF) electrical stimulation pulses to the autonomic nerve and delivering a high frequency electrical signal to the autonomic nerve during the LF frequency stimulation pulse delivery. The high frequency stimulation signal blocks activation of autonomic nerve fibers innervating a non-targeted tissue during the therapeutic LF stimulation pulse delivery.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 29, 2010
    Inventors: Avram Scheiner, David E. Euler
  • Publication number: 20100152804
    Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 17, 2010
    Applicant: Medtronic, Inc.
    Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
  • Publication number: 20100114244
    Abstract: Electrical stimulation may be configured to decrease renal sympathetic activity by creating at least a partial functional conduction block in the efferent and/or afferent sympathetic nerve fibers that innervate the kidneys. An electrical stimulator may deliver a stimulation signal to a renal nerve of a patient. The stimulation signal may be a biphasic signal with a frequency of approximately 100 hertz to 20 kilohertz. In some examples, a sensor may sense a physiological parameter of the patient, and the stimulation generator may activate, deactivate, or adjust the stimulation signal based on the physiological parameter. The physiological parameter may be indicative of sympathetic activity within the patient.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Venkatesh Manda, Kenneth M. Anderson, David E. Euler, Avram Scheiner
  • Publication number: 20100023079
    Abstract: A method and apparatus is provided for determining whether a current atrial-ventricular (AV) delay during cardiac pacing is appropriate for proper mechanical coupling of the atrium and ventricle. If proper mechanical coupling is determined to not exist, an additional atrial contraction is induced within the same ventricular cycle to maintain atrial-ventricular mechanical coupling.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Inventors: Douglas A. Hettrick, Todd Jon Sheldon, Paul D. Ziegler, David E. Euler
  • Patent number: 7336994
    Abstract: Control of defibrillation therapy delivered by implantable medical devices (IMDs) using hemodynamic sensor feedback is disclosed. The hemodynamic sensor feedback allows for increased control over application of atrial defibrillation therapy. Specifically, the therapy is delivered when a fibrillation episode results in a discrete loss of hemodynamic function. Defibrillation therapy is thus withheld for hemodynamically benign arrhythmias.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: February 26, 2008
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, David E. Euler, Eduardo N. Warman, Michael R. Ujhelyi, Rahul Mehra, Paul D. Ziegler, Shailesh Kumar V. Musley, Charles E. Distad, David E. Ritscher
  • Patent number: 7292888
    Abstract: A medical device, e.g., an implantable medical device, delivers one or more neurally-excitable stimulation pulses to myocardial tissue during a period when the tissue is refractory. The width of the pulses is less than or equal to approximately one half millisecond. In some embodiments, the current amplitude of the pulses is less than or equal to approximately twenty milliamps. In exemplary embodiments, the medical device delivers a pulse train of six or fewer pulses separated from each other by an interval that is greater than or equal to approximately ten milliseconds. In some embodiments, the medical device delivers pulses according to a schedule stored in a memory, or as a function of a monitored physiological parameter of a patient, such as an intracardiac pressure. In some embodiments, the medical device suspends or withholds delivery of neurally-excitable based on detection of cardiac ischemia.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: November 6, 2007
    Assignee: Medtronic, Inc.
    Inventors: D. Curtis Deno, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel
  • Patent number: 7233821
    Abstract: A method of evaluating ventricular performance of a heart employing sensors to measure a ventricular dimension signal and deriving indices of ventricular performance therefrom. Premature Shortening (PS) and Isovolumic Lengthening (IL) comprise two indices of ventricular performance determined from analysis of the left ventricular dimension signal during the transition from ventricular filling to ventricular ejection. Measured values of PS and IL are compared to other measured values or reference values to determine if ventricular performance has improved (or worsened). In some embodiments, the dimension sensors may comprise piezoelectric sonomicrometer crystals that operate as ultrasound transmitters and receivers. The sensors may be mounted in relation to a ventricle of the heart either temporarily or permanently, and may be configured either separately from or integrally with cardiac pacing leads.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 19, 2007
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, David E. Euler
  • Patent number: 7233822
    Abstract: A system and method for detecting and classifying cardiac arrhythmias based on cardiac pressure signals or the combination of cardiac electrical and cardiac pressure signals. A cardiac electrogram signal is sensed to derive a cardiac rate from which an arrhythmia detection is made when the cardiac rate meets arrhythmia detection criteria. An intracardiac pressure signal is sensed to derive an indicator of tachycardia based on an analysis of the pressure signal in either the time domain or frequency domain. The detected arrhythmia is classified as tachycardia or fibrillation based on the tachycardia indicator wherein the tachycardia indicator is compared to tachycardia detection criteria and the arrhythmia is classified as tachycardia if tachycardia detection criteria are met and the arrhythmia is classified as fibrillation if the tachycardia detection criteria are not met.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: June 19, 2007
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, David E. Euler, Mark L Brown
  • Patent number: 7200438
    Abstract: A method and device for delivering cardiac stimulation that includes a first electrode, positioned within a first chamber of a heart, sensing cardiac signals associated with the first chamber and capable of delivering stimulation to the first chamber, and a second electrode, positioned within a second chamber of the heart, sensing cardiac signals associated with the second chamber and capable of delivering stimulation to the second chamber. A processing unit processes the sensed signals and controls the stimulation delivery via the first electrode and the second electrode, determining whether a predetermined rhythm is detected in the first chamber, and delivering high-frequency burst pacing to the first chamber in response to a predetermined rate being sensed in the second chamber during the predetermined rhythm.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: April 3, 2007
    Assignee: Medtronic, Inc.
    Inventor: David E. Euler
  • Patent number: 7096064
    Abstract: The disclosure provides methods and apparatus of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants thereof. According to the disclosure monitoring and therapy delivery for a wide variety of acute and chronic cardiac dysfunctions are described and depicted. Various forms of paired or coupled pacing therapy delivery provided alone or in combination with neurostimulation therapy delivered by both implantable and external apparatus, including defibrillation therapy are also provided herein.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: August 22, 2006
    Assignee: Medtronic, Inc.
    Inventors: D. Curtis Deno, William J. Havel, Tommy D. Bennett, Paul M. Stein, David E. Euler
  • Patent number: 6813516
    Abstract: A method for preventing early recurrence of atrial fibrillation by pacing a heart in AAI mode at a rate faster than the intrinsic rate for a selected period of time immediately after delivering therapy to terminate the fibrillation. Ventricular backup pacing in VVI mode may also be provided during the atrial pacing.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 2, 2004
    Assignee: Medtronic, Inc.
    Inventors: Michael R. Ujhelyi, David E. Euler, David A. Casavant, Nirav V. Sheth