Patents by Inventor David E. Sanders

David E. Sanders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124934
    Abstract: The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 18, 2024
    Inventors: James Wayne Bing, Robert F. Cressman, Manju Gupta, Salim M. Hakimi, David Hondred, Todd L. Krone, Mary E. Hartnett Locke, Abigail K. Luckring, Sandra E. Meyer, Daniel Moellenbeck, Kenneth Edwin Narva, Paul D. Olson, Craig D. Sanders, Jimei Wang, Jian Zhang, Gan-Yuan Zhong
  • Patent number: 7648171
    Abstract: A seat belt buckle system includes a seat belt with a latch plate, and a seat belt buckle assembly. The seat belt buckle assembly includes a buckle head for receiving the latch plate, a scabbard covering a portion of the buckle head, and a buckle stalk connecting the buckle head to a vehicle body portion. The scabbard includes at least one tear seam located at an intersection of the first wall and the third wall. The scabbard is configured such that a separation force of the tear seam is less than a buckling load of the scabbard, such that when the buckle is impacted and undergoes a shock load during buckle pretensioning, the tear seam will separate and allow the buckle head to slide down the ramped surface preventing a shock load from a hard contact point that would cause the latch plate to delatch from the buckle head.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: January 19, 2010
    Assignee: TK Holdings Inc.
    Inventors: Brandon S. Marriott, David E. Sanders
  • Publication number: 20080238074
    Abstract: A seat belt buckle system includes a seat belt with a latch plate, and a seat belt buckle assembly. The seat belt buckle assembly includes a buckle head for receiving the latch plate, a scabbard covering a portion of the buckle head, and a buckle stalk connecting the buckle head to a vehicle body portion. The scabbard includes at least one tear seam located at an intersection of the first wall and the third wall. The scabbard is configured such that a separation force of the tear seam is less than a buckling load of the scabbard, such that when the buckle is impacted and undergoes a shock load during buckle pretensioning, the tear seam will separate and allow the buckle head to slide down the ramped surface preventing a shock load from a hard contact point that would cause the latch plate to delatch from the buckle head.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 2, 2008
    Inventors: Brandon S. Marriott, David E. Sanders
  • Patent number: 6587791
    Abstract: An improved method for assessing the geologic risk for hydrocarbon presence and hydrocarbon accumulation size is disclosed. In one configuration, seismic attributes are assigned to a horizontal axis and data quality to a vertical axis to form a matrix crossplot. Direct Hydrocarbon Indicators (DHI) derived from seismic data are used to qualify the presence and accumulation size. A quantitative method for scaling and calibrating the DHI matrix is illustrated that can be applied to existing petroleum basins and by analog to frontier areas.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: July 1, 2003
    Assignee: Pioneer Natural Resources USA, Inc.
    Inventors: Mark A. Dablain, Mark E. Bengtson, David L. Strickler, David E. Sanders, Brett Edwards
  • Publication number: 20030074138
    Abstract: An improved method for assessing the geologic risk for hydrocarbon presence and hydrocarbon accumulation size is disclosed. In one configuration, seismic attributes are assigned to a horizontal axis and data quality to a vertical axis to form a matrix cross-plot. Direct Hydrocarbon Indicators (DHI) derived from seismic data are used to qualify the presence and accumulation size. A quantitative method for scaling and calibrating the DHI matrix is illustrated that can be applied to existing petroleum basins and by analog to frontier areas.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 17, 2003
    Inventors: Mark A. Dablain, Mark E. Bengston, David L. Strickler, David E. Sanders, Brett Edwards
  • Patent number: 5432333
    Abstract: A camera comprising various arrangements for employing optical elements in association with photosensitive elements are described. In some of the arrangements, the optical elements are formed integrally with a substrate containing the photosensitive elements. In other arrangements, an optical element is mounted to a package, or the like, containing the substrate and photosensitive elements. In other arrangements, two or more optical elements are employed, including conventional refractive elements, refractive focusing elements, and refractive beam splitting elements. Utility as solid state image sensors is discussed. Utility for monochromatic and color imaging is discussed. Various devices based on such camera arrangements and methods of making same are discussed.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: July 11, 1995
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, David E. Sanders
  • Patent number: 5340978
    Abstract: A camera comprising various arrangements for employing optical elements in association with photosensitive elements are described. In some of the arrangements, the optical elements are formed integrally with a substrate containing the photosensitive elements. In other arrangements, an optical element is mounted to a package, or the like, containing the substrate and photosensitive elements. In other arrangements, two or more optical elements are employed, including conventional refractive elements, refractive focusing elements, and refractive beam splitting elements. Utility as solid state image sensors is discussed. Utility for monochromatic and color imaging is discussed. Various devices based on such camera arrangements and methods of making same are discussed.
    Type: Grant
    Filed: April 21, 1993
    Date of Patent: August 23, 1994
    Assignee: LSI Logic Corporation
    Inventors: Michael D. Rostoker, David E. Sanders
  • Patent number: 4696017
    Abstract: A digitally-controlled quadrature signal generator is provided having a frequency synthesizer for receiving a digital input signal and in response thereto generating an output signal having a predetermined frequency. The output signal is split to produce an in-phase (I) signal and a quadrature-phase (Q) signal. A first table look-up memory is provided for generating a predetermined phase correction signal for use in cancelling any phase error in the quadrature-phase signal. A mixer receives the phase correction signal and the in-phase signal and in response thereto generates a phase error signal. The phase error signal is then added to the quadrature-phase signal to thereby cancel the undesirable phase error. Moreover, programmable attenuator circuits or limiter circuits are provided to limit the in-phase and quadrature-phase signals and thereby cancel any undesirable amplitude error components therein.
    Type: Grant
    Filed: February 3, 1986
    Date of Patent: September 22, 1987
    Assignee: E-Systems, Inc.
    Inventors: Michael S. Masheff, David E. Sanders
  • Patent number: 4530103
    Abstract: A method and apparatus for baseband synchronizing of a local PN code sequence with a received PN code sequence incorporated in a received spread spectrum signal is provided. The received spread spectrum signal is translated to baseband to produce an I (in-phase) channel baseband signal and a Q (quadrature-phase) channel baseband signal. Data and error baseband correlators correlate the I channel and Q channel baseband signals with in-phase and quadrature-phase PN signals incorporating the local PN code sequence to produce despread on-time, advanced and delayed I channel and Q channel baseband signals. These despread baseband signals are processed and combined to produce an error signal proportional to a difference between the local PN code sequence and the received PN code sequence. A numerically-controlled oscillator circuit is responsive to the error signal to advance or delay the phase of a reference PN clock signal used to form a local PN clock signal.
    Type: Grant
    Filed: August 22, 1983
    Date of Patent: July 16, 1985
    Assignee: E-Systems, Inc.
    Inventors: William H. Mosley, Jr., David E. Sanders, George P. Bortnyk
  • Patent number: 4528674
    Abstract: A method and apparatus for baseband generation of a spread spectrum reference signal for an LMS adaptive array processor is provided. An IF summed, weighted spread spectrum signal is output from the processor and translated to baseband to produce an I (in-phase) channel spread baseband signal and a Q channel (quadrature-phase) spread baseband signal. A baseband correlator receives the I channel and Q channel baseband signals and delayed versions of in-phase and quadrature-phase PN signals and produces despread I channel and Q channel baseband output signals. A baseband linear spreader receives the despread I channel and Q channel baseband output signals and the in-phase and quadrature-phase PN signals and produces respread I channel and Q channel baseband signals. A baseband modulator modulates the respread I channel and Q channel baseband signals with a phase-shifted local oscillator to produce the reference signal.
    Type: Grant
    Filed: August 22, 1983
    Date of Patent: July 9, 1985
    Assignee: E-Systems, Inc.
    Inventors: Dennis A. Sweeney, David E. Sanders
  • Patent number: 4509017
    Abstract: A method and apparatus for phase modulating a carrier signal to convey an information signal (12) such that the carrier signal has a constant amplitude envelope. A Hilbert transform signal (14) of the information signal (12) is produced. The signals (12, 14) are sampled to produce signals (16, 18), which represent cartesian coordinate values. The cartesian coordinate values are then converted into equivalent polar vectors (20-36) which have both an amplitude (R) and an angle (.theta.). The polar vector quantity (R, .theta.) is converted into two unity amplitude vectors (A, B). The unity amplitude vectors (A, B) are offset from the polar vector quantity by an angle the cosine of which is proportional to the amplitude of the polar vector (R). The carrier signal is sequentially phase modulated phase angles of the unity amplitude vectors (A, B) for each sample period of the information signal.
    Type: Grant
    Filed: February 15, 1984
    Date of Patent: April 2, 1985
    Assignee: E-Systems, Inc.
    Inventors: Carl F. Andren, William H. Mosley, Jr., David E. Sanders
  • Patent number: 4499585
    Abstract: A modulating circuit (10) receives a UHF carrier signal together with a digital input signal for data along with a data clock. A channelizer circuit (60) produces I and Q channel digital data signals derived from the digital input signal. The I and Q channel signals are utilized to trigger one shot circuits (70, 72, 74 and 76) to produce positive and negative pulses corresponding to the signal transitions of the input signals thereto. These pulse signals are provided to integrate and hold circuits (80, 82) which serve to have positive and negative integration, thereby producing ramp signal segments in place of the sudden transitions of the rectangular digital input signals. The resulting data signals from the integration process are passed through diode shaper circuits (82, 92) and low pass filters (88, 94) to produce spectrum shaped I and Q channel modulating signals which have a limited bandwidth.
    Type: Grant
    Filed: October 14, 1982
    Date of Patent: February 12, 1985
    Assignee: E-Systems, Inc.
    Inventors: William H. Mosley, David E. Sanders, Richard E. Roberson
  • Patent number: 4485358
    Abstract: A method and apparatus for phase modulating a carrier signal to convey an information signal (12) such that the carrier signal has a constant amplitude envelope. A Hilbert transform signal (14) of the information signal (12) is produced. The signals (12, 14) are sampled to produce signals (16, 18), which represent cartesian coordinate values. The cartesian coordinate values are then converted into equivalent polar vectors (20-36) which have both an amplitude (R) and an angle (.theta.). The polar vector quantity (R,.theta.) is converted into two unity amplitude vectors (A, B). The unity amplitude vectors (A, B) are offset from the polar vector quantity by an angle the cosine of which is proportional to the amplitude of the polar vector (R). The carrier signal is sequentially phase modulated by each of the angles of the unity amplitude vectors (A, B) for each sample period of the information signal.
    Type: Grant
    Filed: September 28, 1981
    Date of Patent: November 27, 1984
    Assignee: E-Systems, Inc.
    Inventors: Carl F. Andren, William H. Mosley, Jr., David E. Sanders
  • Patent number: 4484335
    Abstract: A baseband correlation circuit (10) receives an IF spread spectrum input signal which is phase compared with a local oscillator signal and a phase shifted local oscillator signal to produce I channel and Q channel spread baseband signals. Each of these signals is input to four sample and hold circuits (34-48). A local PN code signal is converted from two-phase to four-phase to produce I and Q channel local PN signals. These signals together with the logical inverses thereof are provided as the control inputs for the sample and hold circuits (34-48). For each pair of sample and hold circuits there is a respective summer (86-92). The pair of sample and hold circuits together with the corresponding summer comprises a double balanced multiplier. There are four double balanced multipliers for producing four respective product signals. The product signals are input as pairs into summers (106) and (108) to produce despread, narrowband baseband I and Q channel output signals at output lines (110, 112).
    Type: Grant
    Filed: October 14, 1982
    Date of Patent: November 20, 1984
    Assignee: E-Systems, Inc.
    Inventors: William H. Mosley, David E. Sanders
  • Patent number: 4380737
    Abstract: A fast slew rate automatic gain control circuit (10) includes a variable gain amplifier (14) which is responsive to a gain control signal and an amplitude detector (18) which produces an amplitude signal corresponding to the amplitude of the received signal transmitted through amplifier (14). The amplitude signal is provided to the input node of a loop filter (24) and to the inputs of threshold detectors (30, 32). Positive and negative slew threshold circuits (34, 38) provide threshold signals respectively for the threshold detector circuits (30, 32). When the amplitude signal is within the range of the threshold signals the loop filter produces the gain control as the function of the amplitude signal. When the amplitude signal is less than the positive slew threshold signal the threshold detector (32) produces a drive signal which is provided to the loop filter (24) and causes the generation of the gain control signal to have an accelerated positive slew rate which increases the gain.
    Type: Grant
    Filed: November 12, 1980
    Date of Patent: April 19, 1983
    Assignee: E-Systems, Inc.
    Inventor: David E. Sanders
  • Patent number: 4373141
    Abstract: A peak detector circuit (10) is disclosed wherein an input signal is full-wave rectified by a circuit (14) and the rectified signal is provided simultaneously to peak detect, hold and dump circuits (18), (20). Each of the peak detect, hold and dump circuits is discharged at the start of periodic intervals with a phase offset between the intervals for the two circuits. The peak signals are discharged at essentially the start of the interval followed by rapid charging of the peak signal to the peak amplitude of the rectified input signal. The later portions of each of the intervals of the peak signals produced by the peak detect, hold and dump circuits (18) and (20) are transmitted alternately through a multiplexer circuit (24). The resulting output signal is transmitted through a high impedance buffer amplifier (30) to an output terminal (32) of peak detector circuit (10).
    Type: Grant
    Filed: January 22, 1981
    Date of Patent: February 8, 1983
    Assignee: E-Systems, Inc.
    Inventor: David E. Sanders
  • Patent number: 4317204
    Abstract: An anti-jam PN sequence spread spectrum conferencing communication system is disclosed for simultaneously transmitting and receiving in a plurality of communications channels secure voice communications. All received messages are modulated with the same pseudo noise sequence and arrive at any given channel at random time states, wherein the messages are separated, separately processed and finally conferenced, using a technique based upon the correlation of the PN sequence and dependent upon the randomness of the epoch state of a given PN sequence coded with a message in relation to the other coded messages.
    Type: Grant
    Filed: June 4, 1976
    Date of Patent: February 23, 1982
    Assignee: NCR Corporation
    Inventors: Robert S. Gordy, David E. Sanders, Ramon P. Chambers
  • Patent number: 4280218
    Abstract: Improved acquisition of signals in a Gaussian noise environment is achieved by applying the output of a correlator (14) to a threshold detector (12). A correlation pulse output from the threshold detector (12) and the output of the correlator (14) are input to a false alarm processor (10) that includes multiple correlation checking channels (22). Each correlation checking channel (22) is assigned to sample an input at various points over a selected interval by an enable pulse generated at the output of select logic (30). Each correlation checking channel (22) includes correlation check enable logic (34), a blanking generator (36), and a confirmation logic (42). In the confirmation logic (42) samples of the analog input are taken at discrete times and integrated over a preselected number of intervals.
    Type: Grant
    Filed: August 8, 1979
    Date of Patent: July 21, 1981
    Assignee: E-Systems, Inc.
    Inventors: Robert S. Gordy, Billy R. Poston, David E. Sanders
  • Patent number: 4215239
    Abstract: Acquisition of a carrier frequency lock and a symbol timing lock is efficiently achieved during the preamble of a data signal in a time division multiple access communication system by first operating the system in an acquisition mode and subsequently switching to a data recovery mode. In the acquisition mode, an input signal is passed through a transversal correlator and frequency multiplied by a factor of two. The multiplied signal is used to control a local oscillator for demodulating the carrier signal. Also in the acquisition mode, the output of the transversal correlator is envelope detected and applied to a symbol timing loop that produces a symbol timing signal. Upon the detection of a symbol timing lock, a lock detector switches the system to the data recovery mode. In the data recovery mode, the input signal is frequency multiplied by 4 and used to control the local oscillator for demodulating the input signal.
    Type: Grant
    Filed: December 5, 1977
    Date of Patent: July 29, 1980
    Assignee: E-Systems, Inc.
    Inventors: Robert S. Gordy, David E. Sanders
  • Patent number: 4186349
    Abstract: A radio receiver is disclosed which measures the statistics of an interfering narrow band noise signal and from these statistics generates a function which when mixed at baseband with a data signal combined with the narrow band noise reduces the interfering effect of the noise signal. The interference eliminating function is generated by processing signals representing an approximation of the data, the covariance of the narrow band noise interference, the noise figure for the receiver and the amplitude of the data signal. As the function is generated it is input to a mixer together with the combined narrow band noise and data signal. Iterated processing improves the estimation for the noise statistics thereby improving the approximation for the resulting data signal. This further enhances the solution for the noise elimination function thereby still further improving the desired data signal, thus creating a positive improving feedback loop.
    Type: Grant
    Filed: December 27, 1977
    Date of Patent: January 29, 1980
    Assignee: E-Systems, Inc.
    Inventors: Robert S. Gordy, Ramon P. Chambers, David E. Sanders