Patents by Inventor David E. Seeger

David E. Seeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7948077
    Abstract: Apparatus and methods are provided for integrating microchannel cooling modules within high-density electronic modules (e.g., chip packages, system-on-a-package modules, etc.,) comprising multiple high-performance IC chips. Electronic modules are designed such that high-performance (high power) IC chips are disposed in close proximity to the integrated cooling module (or cooling plate) for effective heat extraction. Moreover, electronic modules which comprise large surface area silicon carriers with multiple chips face mounted thereon are designed such that integrated silicon cooling modules are rigidly bonded to the back surfaces of such chips to increase the structural integrity of the silicon carriers.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Evan G. Colgan, Lawrence S. Mok, Chirag S. Patel, David E. Seeger
  • Patent number: 7888786
    Abstract: Apparatus and methods are provided for integrating microchannel cooling modules within high-density electronic modules (e.g., chip packages, system-on-a-package modules, etc.,) comprising multiple high-performance IC chips. Electronic modules are designed such that high-performance (high power) IC chips are disposed in close proximity to the integrated cooling module (or cooling plate) for effective heat extraction. Moreover, electronic modules which comprise large surface area silicon carriers with multiple chips face mounted thereon are designed such that integrated silicon cooling modules are rigidly bonded to the back surfaces of such chips to increase the structural integrity of the silicon carriers.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Evan G. Colgan, Lawrence S. Mok, Chirag S. Patel, David E. Seeger
  • Publication number: 20080315403
    Abstract: Apparatus and methods are provided for integrating microchannel cooling modules within high-density electronic modules (e.g., chip packages, system-on-a-package modules, etc.,) comprising multiple high-performance IC chips. Electronic modules are designed such that high-performance (high power) IC chips are disposed in close proximity to the integrated cooling module (or cooling plate) for effective heat extraction. Moreover, electronic modules which comprise large surface area silicon carriers with multiple chips face mounted thereon are designed such that integrated silicon cooling modules are rigidly bonded to the back surfaces of such chips to increase the structural integrity of the silicon carriers.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 25, 2008
    Inventors: Paul S. Andry, Evan G. Colgan, Lawrence S. Mok, Chirag S. Patel, David E. Seeger
  • Patent number: 7230334
    Abstract: Apparatus and methods are provided for integrating microchannel cooling modules within high-density electronic modules (e.g., chip packages, system-on-a-package modules, etc.,) comprising multiple high-performance IC chips. Electronic modules are designed such that high-performance (high power) IC chips are disposed in close proximity to the integrated cooling module (or cooling plate) for effective heat extraction. Moreover, electronic modules which comprise large surface area silicon carriers with multiple chips face mounted thereon are designed such that integrated silicon cooling modules are rigidly bonded to the back surfaces of such chips to increase the structural integrity of the silicon carriers.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Evan G. Colgan, Lawrence S. Mok, Chirag S. Patel, David E. Seeger
  • Patent number: 6685853
    Abstract: The present invention is an admixture of an electrically conductive material and an energy sensitive material resulting in a conductive energy sensitive composition. The structures are useful for lithography in microelectronic fabrication to avoid the effects of charging on resists from electron beams. The compositions are also useful in applications of scanning electron metrology and static dissipation.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: February 3, 2004
    Assignee: International Business Machines Corporation
    Inventors: Marie Angelopoulos, Edward D. Babich, Inna V. Babich, Kuang-Jung Chen, Wayne Martin Moreau, David E. Seeger
  • Patent number: 6344305
    Abstract: A high-performance radiation sensitive silicon-containing negative-tone resist is provided along with a method of using the silicon-containing resist in multilayer, including bilayer, imaging for manufacturing semiconductor devices. The negative-tone silicon-containing resist is based on an acid catalyzed high-contrast crosslinking of aqueous base soluble silicon-containing phenolic polymers through reaction of a carbocation of the crosslinking agent with the hydroxyl site of the phenolic group in the silicon-containing polymers. A chemically amplified silicon-containing negative-tone resist composition comprising said silicon-containing polymer resin; at least one crosslinking agent; one acid generator; and a solvent is provided. The silicon-containing resist composition has high silicon content and provide excellent resolution and a means of patterning high aspect ratio resist patterns.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: February 5, 2002
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Ahmad D. Katnani, Douglas Charles LaTulipe, Jr., David E. Seeger, William Ross Brunsvold, Ali Afzali-Ardakani
  • Patent number: 6187505
    Abstract: A high-performance radiation sensitive silicon-containing negative-tone resist is provided along with a method of using the silicon-containing resist in multilayer, including bilayer, imaging for manufacturing semiconductor devices. The negative-tone silicon-containing resist is based on an acid catalyzed high-contrast crosslinking of aqueous base soluble silicon-containing phenolic polymers through reaction of a carbocation of the crosslinking agent with the hydroxyl site of the phenolic group in the silicon-containing polymers. A chemically amplified silicon-containing negative-tone resist composition comprising said silicon-containing polymer resin; at least one crosslinking agent; one acid generator; and a solvent is provided. The silicon-containing resist composition has high silicon content and provide excellent resolution and a means of patterning high aspect ratio resist patterns.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: February 13, 2001
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Ahmad D. Katnani, Douglas Charles LaTulipe, Jr., David E. Seeger, William Ross Brunsvold, Ali Afzali-Ardakani
  • Patent number: 6132644
    Abstract: The present invention is an admixture of an electrically conductive material and an energy sensitive material resulting in a conductive energy sensitive composition. The structures are useful for lithography in microelectronic fabrication to avoid the effects of charging on resists from electron beams. The compositions are also useful in applications of scanning electron metrology and static dissipation.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: October 17, 2000
    Assignee: International Business Machines Corporation
    Inventors: Marie Angelopoulos, Edward D. Babich, Inna V. Babich, Kuang-Jung Chen, Wayne Martin Moreau, David E. Seeger
  • Patent number: 5593812
    Abstract: The sensitivity of a photoresist to actinic light is improved by the addition of certain dyes. The photoresist includes a polymer matrix, a photosensitive acid generator and at least one compound selected from the group consisting of dyes containing at least one heterosulphur atom such as 2,2.sup.1,5.sup.1,2"-terthiophene and its derivatives; thianthrene and its derivatives, and 4,6-diphenylthieno(3,4-d)-1,3-dioxol-2-one-5,5-dioxide; phenylsulfone and its derivatives; and 4,5-diphenyl-1,3-dioxol-2-one; 3,4-bis(acetoxymethyl)furan; chelidonic acid and its derivatives; and 5,7,12,14-pentacenetetrone. Resist images on a substrate are formed from the compositions.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: January 14, 1997
    Assignee: International Business Machines Corporation
    Inventors: Edward D. Babich, Karen E. Petrillo, John P. Simons, David E. Seeger
  • Patent number: 5569501
    Abstract: The present invention relates to an improved method of depositing a diamond-like carbon film onto a substrate by low temperature plasma-enhanced chemical vapor deposition (PECVD) from a hydrocarbon/helium plasma. More specifically, the diamond-like carbon films of the present invention are deposited onto the substrate by employing acetylene which is heavily diluted with helium as the plasma gas. The films formed using the process of the present invention are characterized as being amorphous and having dielectric strengths comparable to those normally observed for diamond films. More importantly, however is that the films produced herein are thermally stable, optically transparent, absorbent in the ultraviolet range and hard thus making them extremely desirable for a wide variety of applications.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 29, 1996
    Assignee: International Business Machines Corporation
    Inventors: Fredric D. Bailey, Douglas A. Buchanan, Alessandro C. Callegari, Howard M. Clearfield, Fuad E. Doany, Donis G. Flagello, Harold J. Hovel, Douglas C. Latulipe, Jr., Naftali E. Lustig, Andrew T. S. Pomerene, Sampath Purushothaman, Christopher M. Scherpereel, David E. Seeger, Jane M. Shaw
  • Patent number: 5567569
    Abstract: Quinone diazo compounds having bonded to the diazo ring or directly bonded to a ring of the compound, certain non-metallic atoms that improve the photosensitivity thereof are provided. These quinone diazo compounds are useful as photoactive compounds in photoresist compositions, and particularly positive photoresist composition employed in x-ray or electron beam radiation. Also provided is a method for preparing compounds of the present invention.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: October 22, 1996
    Assignee: International Business Machines Corporation
    Inventors: Ari Aviram, William R. Brunsvold, Daniel Bucca, Willard E. Conley, Jr., David E. Seeger
  • Patent number: 5552256
    Abstract: Quinone diazo compounds having bonded to the diazo ring or directly bonded to a ring of the compound, certain non-metallic atoms that improve the photosensitivity thereof are provided. These quinone diazo compounds are useful as photoactive compounds in photoresist compositions, and particularly positive photoresist composition employed in x-ray or electron beam radiation. Also provided is a method for preparing compounds of the present invention.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: September 3, 1996
    Assignee: International Business Machines Corporation
    Inventors: Ari Aviram, William R. Brunsvold, Daniel Bucca, Willard E. Conley, Jr., David E. Seeger
  • Patent number: 5470661
    Abstract: The present invention relates to an improved method of depositing a diamond-like carbon film onto a substrate by low temperature plasma-enhanced chemical vapor deposition (PECVD) from a hydrocarbon/helium plasma. More specifically, the diamond like carbon films of the present invention are deposited onto the substrate by employing acetylene which is heavily diluted with helium as the plasma gas. The films formed using the process of the present invention are characterized as being amorphous and having dielectric strengths comparable to those normally observed for diamond films. More importantly, however is that the films produced herein are thermally stable, optically transparent, absorbent in the ultraviolet range and hard thus making them extremely desirable for a wide variety of applications.
    Type: Grant
    Filed: January 7, 1993
    Date of Patent: November 28, 1995
    Assignee: International Business Machines Corporation
    Inventors: Fredric D. Bailey, Douglas A. Buchanan, Alessandro C. Callegari, Howard M. Clearfield, Fuad E. Doany, Donis G. Flagello, Harold J. Hovel, Douglas C. Latulipe, Jr., Naftali E. Lustig, Andrew T. S. Pomerene, Sampath Purushothaman, Christopher M. Scherpereel, David E. Seeger, Jane M. Shaw
  • Patent number: 5370825
    Abstract: Disclosed is a novel composition of matter comprising a polyacid and a polymer containing repeating units which contain one or more basic atoms. The complex is water-soluble and electrically conductive. The complex is useful in providing organic discharge layers for use in electronic applications and fabrications.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: December 6, 1994
    Assignee: International Business Machines Corporation
    Inventors: Marie Angelopoulos, Jeffrey D. Gelorme, Thomas H. Newman, Niranjan M. Patel, David E. Seeger
  • Patent number: 5264328
    Abstract: The present invention provides a method for determining the development endpoint in a X-ray lithographic process. Endpoint is determined by visually observing resist test field patterns through a microscope during the developing step. During the developing, changing test field patterns are formed because test field locations each had been exposed simultaneously to different radiation doses. These different doses are produced when radiation passes through a mask containing a plurality of different size radiation attenuators. When the changing test field pattern matches a known pattern, which is correlated to the desired development endpoint, the workpiece is removed from the developing step.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: November 23, 1993
    Assignee: International Business Machines Corporation
    Inventors: Ronald A. DellaGuardia, John L. Mauer, IV, David E. Seeger
  • Patent number: 5178975
    Abstract: A technique for making a high resolution X-ray mask with high aspect ratio absorber patterns sufficient for use in X-ray lithography wherein a thin resist layer is used to provide a low contrast mask, and then an X-ray exposure is used to increase the aspect ratio of the absorber to increase the contrast of the mask. The mask is first patterned with an e-beam resist exposure and development step, and the plating of the base material is activated by a reactive ion etch followed by electroplating. The resist is removed and the mask is coated with a negative acting X-ray resist. The back of the mask is exposed to X-rays wherein the existing absorber acts as an X-ray mask to expose the desired areas of the resist. The resist is removed after development, reactive ion etching and electroplating resulting in a mask with high contrast.
    Type: Grant
    Filed: January 25, 1991
    Date of Patent: January 12, 1993
    Assignee: International Business Machines Corporation
    Inventors: Kaolin Ng Chiong, David E. Seeger
  • Patent number: 4752668
    Abstract: A system for removing excess material from a semiconductor wafer employs an excimer laser for ablative photocomposition. A wafer is positioned on an X-Y stage that is computer controlled to position the wafer at points where the laser may be focused to remove excess material whether over alignment marks or identified contamination. The laser passes through a vacuum chamber which by generating an inward laminar flow constrains any particulate contamination resulting from the ablative photodecomposition from spreading. This material is removed by the vacuum system.
    Type: Grant
    Filed: April 28, 1986
    Date of Patent: June 21, 1988
    Inventors: Michael G. Rosenfield, David E. Seeger