Patents by Inventor DAVID EAVARONE

DAVID EAVARONE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180327509
    Abstract: The present invention provides glycan-interacting antibodies and methods for producing glycan-interacting antibodies useful in the treatment and prevention of human disease, including cancer. Such glycan-interacting antibodies include humanized antibodies, derivatives and fragments thereof as well as related compositions and kits. Methods of using glycan-interacting antibodies for treatment and diagnosis are included.
    Type: Application
    Filed: November 10, 2016
    Publication date: November 15, 2018
    Inventors: David A. Eavarone, Jillian M. Prendergast, Jeffrey Behrens, Alexey Alexandrovich Lugovskoy, Daniel T. Dransfield
  • Publication number: 20170306046
    Abstract: The present invention provides glycan-interacting antibodies and methods for producing glycan-interacting antibodies useful in the treatment and prevention of human disease, including cancer. Such glycan-interacting antibodies include monoclonal antibodies, derivatives, and fragments thereof as well as compositions and kits comprising them. Further provided are methods of using glycan-interacting antibodies to target cells and treat disease.
    Type: Application
    Filed: November 12, 2015
    Publication date: October 26, 2017
    Inventors: Ana Paula Galvao daSilva, Darius Ghaderi, Mai Zhang, Kristan Meetze, Julie DeSander, Jeffrey Behrens, David A. Eavarone, Jillian M. Prendergast, Alexey Alexandrovich Lugovskoy
  • Publication number: 20150099001
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
    Type: Application
    Filed: September 8, 2014
    Publication date: April 9, 2015
    Inventors: Shiladitya Sengupta, Ganlin Zhao, Ishan Capila, David Eavarone, Ram Sasisekharan
  • Publication number: 20140363497
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Inventors: Shiladitya Sengupta, Ganlin Zhao, Ishan Capila, David Eavarone, Ram Sasisekharan
  • Publication number: 20110280799
    Abstract: The present invention relates to novel nanocell compositions and their use in imaging, diagnostic and treatment methods. In one embodiment, nanocells tailored for imaging methods comprise a nanocore surrounded by a lipid matrix, and are modified to contain a radionuclide core or a nanocore with an emission spectra. The nanocells may be size restricted such as being greater than about 60 nm so that they selectively extravasate at sites of angiogenesis (e.g. tumor) and do not pass through normal vasculature or enter non-tumor bearing tissue. In this way, angiogenic sites can be both detected and treated. In another embodiment, nanocells are tailored for various treatment methods, including the treatment of brain cancer, asthma, Grave's Disease, Cystic Fibrosis, and Pulmonary Fibrosis.
    Type: Application
    Filed: June 7, 2011
    Publication date: November 17, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Shiladitya Sengupta, Ram Sasisekharan, Carlos J. Bosques, David A. Eavarone, Pochi Shum
  • Publication number: 20100303912
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
    Type: Application
    Filed: May 14, 2010
    Publication date: December 2, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Shiladitya Sengupta, Ganlin Zhao, Ishan Capila, David Eavarone, Ram Sasisekharan
  • Publication number: 20100272822
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antiangiogenic agent.
    Type: Application
    Filed: June 4, 2010
    Publication date: October 28, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: SHILADITYA SENGUPTA, GANLIN ZHAO, ISHAN CAPILA, DAVID EAVARONE, RAM SASISEKHARAN
  • Publication number: 20100119494
    Abstract: This invention relates, in part, to methods and compositions that modulate the stem cell environment. More specifically, the invention relates, in part, to methods and compositions for modulating stem cell differentiation. Therefore, methods and compositions are provided for modulating glycosaminoglycan moieties, e.g., heparan sulfate glycosaminoglycan (HSGAG) moieties, in the microenvironment of stem cells. Methods and compositions for promoting or inhibiting embryonic stem cell differentiation (e.g., differentiation into endothelial cells) are also provided. This invention also relates, therefore, in part, to cell populations (e.g., endothelial cell populations or impoverished endothelial cell populations) that can be produced with the methods and compositions provided. Furthermore, the invention relates, in part, to tissues, and uses thereof, formed by the methods and compositions provided. Moreover, the invention also relates, in part, to methods of treatment using the methods and compositions provided.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: SHILADITYA SENGUPTA, RAM SASISEKHARAN, NISHLA KEISER, DAVID EAVARONE, TANYEL KIZILTEPE BILGICER, AARTHI CHANDRASEKARAN, DAVID A. BERRY, KRISTINE HOLLEY
  • Publication number: 20090110633
    Abstract: The present invention relates to novel nanocell compositions and their use in imaging, diagnostic and treatment methods. In one embodiment, nanocells tailored for imaging methods comprise a nanocore surrounded by a lipid matrix, and are modified to contain a radionuclide core or a nanocore with an emission spectra. The nanocells may be size restricted such as being greater than about 60 nm so that they selectively extravasate at sites of angiogenesis (e.g. tumor) and do not pass through normal vasculature or enter non-tumor bearing tissue. In this way, angiogenic sites can be both detected and treated. In another embodiment, nanocells are tailored for various treatment methods, including the treatment of brain cancer, asthma, Grave's Disease, Cystic Fibrosis, and Pulmonary Fibrosis.
    Type: Application
    Filed: March 14, 2006
    Publication date: April 30, 2009
    Inventors: Shiladitya Sengupta, Ram Sasisekharan, Carlos J. Bosques, David A. Eavarone, Pochi Shum
  • Publication number: 20070053845
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
    Type: Application
    Filed: July 28, 2006
    Publication date: March 8, 2007
    Inventors: Shiladitya Sengupta, Ganlin Zhao, Ishan Capila, David Eavarone, Ram Sasisekharan
  • Publication number: 20070020243
    Abstract: This invention relates, in part, to methods and compositions that modulate the stem cell environment. More specifically, the invention relates, in part, to methods and compositions for modulating stem cell differentiation. Such modulation, in some aspects of the invention, is accomplished by agents that modulate glycosaminoglycans in the stem cell microenvironment (i.e., at or on the cell surface and/or in the extracellular matrix). Therefore, methods and compositions are provide for modulating glycosaminoglycan moieties, e.g., heparan sulfate glycosaminoglycan (HSGAG) moieties, in the microenvironment of stem cells. Methods and compositions for promoting or inhibiting embryonic stem cell differentiation (e.g., differentiation into endothelial cells) are also provided. This invention also relates, therefore, in part, to cell populations (e.g., endothelial cell populations or impoverished endothelial cell populations) that can be produced with the methods and compositions provided.
    Type: Application
    Filed: January 12, 2006
    Publication date: January 25, 2007
    Applicant: Massachusetts Institute of Technology
    Inventors: Shiladitya Sengupta, Ram Sasisekharan, Nishla Keiser, David Eavarone, Tanyel Kiziltepe Bilgicer, Aarthi Chandrasekaran, David Berry, Kristine Holley
  • Publication number: 20050266067
    Abstract: Nanocells allow the sequential delivery of two different therapeutic agents with different modes of action or different pharmacokinetics. A nanocell is formed by encapsulating a nanocore with a first agent inside a lipid vesicle containing a second agent. The agent in the outer lipid compartment is released first and may exert its effect before the agent in the nanocore is released. The nanocell delivery system may be formulated in pharmaceutical composition for delivery to patients suffering from diseases such as cancer, inflammatory diseases such as asthma, autoimmune diseases such as rheumatoid arthritis, infectious diseases, and neurological diseases such as epilepsy. In treating cancer, a traditional antineoplastic agent is contained in the outer lipid vesicle of the nanocell, and an antiangiogenic agent is loaded into the nanocore. This arrangement allows the antineoplastic agent to be released first and delivered to the tumor before the tumor's blood supply is cut off by the antianiogenic agent.
    Type: Application
    Filed: March 2, 2005
    Publication date: December 1, 2005
    Inventors: Shiladitya Sengupta, Ganlin Zhao, Ishan Capila, David Eavarone, Ram Sasisekharan