Patents by Inventor David Eugene Heim

David Eugene Heim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8213132
    Abstract: A narrow track-width magnetoresistive sensor by defining a trench formed between first and second hard bias layers and depositing the sensor into the trench. The sensor can include a sensor stack sandwiched between first and second electrically conductive lead layers. First and second electrically insulating side walls are formed at either side of the sensor stack. First and second hard bias layers extend from the sides of the sensor stack, being separated from the sensor stack by the first and second electrically insulating side walls. First and second physically hard insulation layers are provided over each of the hard bias layers.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: July 3, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Eugene Heim, Kim Y. Lee, Tsann Lin, Jih-Shiuan Luo
  • Patent number: 7652855
    Abstract: A lead overlay design of a magnetic sensor is described with sensor and free layer dimensions such that the free layer is stabilized by the large demagnetization field due to the shape anisotropy. In one embodiment the giant magnetoresistive (GMR) effect under the leads is destroyed by removing the antiferromagnetic (AFM) and pinned layers above the free layer. The overlaid lead pads are deposited on the exposed spacer layer at the sides of the mask that defines the active region. In other embodiment a layer of electrically insulating material is deposited over the sensor to encapsulate it and thereby insulate it from contact with the hardbias structures. Various embodiments with self-aligned leads are also described. In a variation of the encapsulation embodiment, the insulating material is also deposited under the lead pads so the electrical current is channeled through the active region of the sensor and sidewall deposited lead pads.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: James Mac Freitag, David Eugene Heim, Kuok San Ho, Wipul Pemsiri Jayasekara, Kim Y. Lee, Tsann Lin, Jyh-Shuey Lo, Mustafa Michael Pinarbasi, Ching Hwa Tsang
  • Patent number: 7630177
    Abstract: In a tunnel magnetoresistive (TMR) device, free sublayers are separated by an intermediate spacer layer that serves to ensure a uniform circumferential magnetization in the free stack, counterbalancing orange-peel coupling by antiferromagnetic exchange coupling. Thus, a CPP MR device may have a seed stack, a pinned stack on the seed stack, and a tunnel barrier on the pinned stack. A free stack can be on the tunnel barrier, and the free stack can include structure for promoting uniform circumferential magnetization in the free stack.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: December 8, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert Stanley Beach, David Eugene Heim, Vladimir Nikitin, David John Seagle
  • Patent number: 7472469
    Abstract: A method is disclosed for fabricating a read sensor for a magnetic head for a hard disk drive having a read sensor stack and two lateral stacks. The method of fabrication includes forming lateral stacks on a gap layer, surrounding a groove to form a template. The read sensor stack is then formed in the groove, which defines the lateral dimensions of the read sensor stack, and lead layers are then formed on the lateral stacks. Also disclosed is a read head for a disk drive having a sensor stack defined by pre-established lateral stacks, and a disk drive having the read head.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 6, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Eugene Heim, Kim Y. Lee, Tsann Lin, Jih-Shiuan Luo, Chun-Ming Wang
  • Publication number: 20080112090
    Abstract: A lead overlay design of a magnetic sensor is described with sensor and free layer dimensions such that the free layer is stabilized by the large demagnetization field due to the shape anisotropy. In one embodiment the giant magnetoresistive (GMR) effect under the leads is destroyed by removing the antiferromagnetic (AFM) and pinned layers above the free layer. The overlaid lead pads are deposited on the exposed spacer layer at the sides of the mask that defines the active region. In other embodiment a layer of electrically insulating material is deposited over the sensor to encapsulate it and thereby insulate it from contact with the hardbias structures. Various embodiments with self-aligned leads are also described. In a variation of the encapsulation embodiment, the insulating material is also deposited under the lead pads so the electrical current is channeled through the active region of the sensor and sidewall deposited lead pads.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 15, 2008
    Inventors: James Mac Freitag, David Eugene Heim, Kuok San Ho, Wipul Pemsiri Jayasekara, Kim Y. Lee, Tsann Lin, Jyh-Shuey Lo, Mustafa Michael Pinarbasi, Ching Hwa Tsang
  • Patent number: 7344330
    Abstract: A method of constructing a small trackwidth magnetorsesistive sensor by defining a trench between first and second hard bias layers and depositing the sensor into the trench.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: March 18, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Eugene Heim, Kim Y. Lee, Tsann Lin, Jih-Shiuan Luo
  • Patent number: 7268981
    Abstract: In one illustrative example, a spin valve sensor includes a free layer structure; an anti-parallel (AP) pinned layer structure which includes at least a first AP pinned layer; and a non-magnetic electrically conductive spacer layer formed between the free layer structure and the AP pinned layer structure. First and second antiferromagnetic (AFM) pinning layer structures for magnetically pinning the first AP pinned layer are formed in end regions but are absent from its central region. Edges of each AFM pinning layer structure may be separated by a distance DA from the sensor edges. The first AP pinned layer is formed in both the central region and the end regions so as to be in contact with the first and second AFM pinning layer structures. Advantageously, adequate pinning properties are exhibited in a sensor which provides the benefits of a self-pinned sensor (e.g. a reduced sensor profile in the central region).
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 11, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: David Eugene Heim
  • Patent number: 7019950
    Abstract: A magnetoresistive sensor has bias magnets with substantially vertical end walls. The offset between the bias magnets and the free layer is optimized by adjusting the thickness of a spacer layer. A disk drive has a read element including a magnetoresistive sensor with optimized bias magnets having substantially vertical end walls.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: March 28, 2006
    Assignee: Hitachi Global Storage Technologies, Netherlands, B.V.
    Inventors: David Eugene Heim, Mustafa Michael Pinarbasi
  • Publication number: 20040257716
    Abstract: A magnetoresistive sensor has bias magnets with substantially vertical end walls. The offset between the bias magnets and the free layer is optimized by adjusting the thickness of a spacer layer. A disk drive has a read element including a magnetoresistive sensor with optimized bias magnets having substantially vertical end walls.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: David Eugene Heim, Mustafa Michael Pinarbasi
  • Patent number: 6122144
    Abstract: A write head is provided that has an "I" shaped pole tip structure. Flux leakage between bottom corners of a top horizontal component to a bottom horizontal component of the "I" shaped pole tip structure is obviated by rounding or tapering the side edges of the top horizontal component as it recesses into the head from the ABS. The angle taken by each recessed side edge with respect to the ABS edge is less than 90.degree. so that flux concentrations at the corners are minimized and flux leakage from these corners to the bottom horizontal component is substantially eliminated. In another embodiment of the invention the top horizontal component is configured with a necked down portion between front and rear portions for minimizing flux saturation of other pole tip components.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: September 19, 2000
    Assignee: International Business Machines Corporation
    Inventors: Thomas Young Chang, David Eugene Heim, Edward Hinpong Lee
  • Patent number: 5935644
    Abstract: The present invention uncouples the dependence between the zero throat height and the flare point of a write head by recessing the first insulation layer within the first pole piece layer. The first pole piece layer and the first insulation layer have planar surfaces which preferably lie in a common plane, the zero throat height being defined at the point where the planar surface of the first pole piece layer first meets the planar surface of the first insulation layer within the head. It is also at this point that the first and second pole piece layers separate from one another. Accordingly, the zero throat height can be accurately placed relative to the stripe height of a magneto-resistive (MR) sensor. Further, when a photoresist layer is spun onto the partially completed head for the construction of the pole tip of the second pole piece light directed into the photoresist layer for photo-imaging the pole tip does not reflect into the photoresist layer adjacent the pole tip.
    Type: Grant
    Filed: March 4, 1998
    Date of Patent: August 10, 1999
    Assignee: International Business Machines Corporation
    Inventors: David Eugene Heim, Hugo Alberto Emilio Santini
  • Patent number: 5793578
    Abstract: The present invention uncouples the dependence between the zero throat height and the flare point of a write head by recessing the first insulation layer within the first pole piece layer. The first pole piece layer and the first insulation layer have planar surfaces which preferably lie in a common plane, the zero throat height being defined at the point where the planar surface of the first pole piece layer first meets the planar surface of the first insulation layer within the head. It is also at this point that the first and second pole piece layers separate from one another. Accordingly, the zero throat height can be accurately placed relative to the stripe height of a magneto-resistive (MR) sensor. Further, when a photoresist layer is spun onto the partially completed head for the construction of the pole tip of the second pole piece light directed into the photoresist layer for photo-imaging the pole tip does not reflect into the photoresist layer adjacent the pole tip.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: August 11, 1998
    Assignee: International Business Machines Corporation
    Inventors: David Eugene Heim, Hugo Alberto Emilio Santini
  • Patent number: 5666246
    Abstract: A magnetic storage system in which a magnetoresistive (MR) transducer utilizes a high coercivity magnetic material to produce a bias field for achieving higher signal output with low currents for narrow track width applications. Strips of high coercivity magnetic material contiguously contact opposite track-overlying edges of an MR layer. Each strip has a horizontal component of magnetization times its thickness that is at least equal to a horizontal component of magnetization of the MR layer times its thickness before the MR layer is biased by the strips, and each strip has its magnetization direction canted at an angle .phi. from its horizontal component. The MR layer is asymmetrically positioned between spaced magnetic shields and the MR layer is separated by a conductive nonmagnetic spacer layer from a shunt layer.
    Type: Grant
    Filed: May 4, 1995
    Date of Patent: September 9, 1997
    Assignee: International Business Machines Corporation
    Inventors: Hardayal Singh Gill, David Eugene Heim