Patents by Inventor David F. Hilscher

David F. Hilscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9831084
    Abstract: A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: November 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Michael P. Chudzik, Min Dai, Martin M. Frank, David F. Hilscher, Rishikesh Krishnan, Barry P. Linder, Claude Ortolland, Joseph F. Shepard, Jr.
  • Patent number: 9373501
    Abstract: A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: June 21, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Michael P. Chudzik, Min Dai, Martin M. Frank, David F. Hilscher, Rishikesh Krishnan, Barry P. Linder, Claude Ortolland, Joseph F. Shepard, Jr.
  • Publication number: 20160027640
    Abstract: A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
    Type: Application
    Filed: October 3, 2015
    Publication date: January 28, 2016
    Inventors: Takashi Ando, Michael P. Chudzik, Min Dai, Martin M. Frank, David F. Hilscher, Rishikesh Krishnan, Barry P. Linder, Claude Ortolland, Joseph F. Shepard, JR.
  • Patent number: 9165801
    Abstract: A recyclable fluid cleaning system wafers includes a cleaning vessel configured to clean semiconductor wafers immersed in a bath of persulfuric acid cleaning solution, the cleaning solution circulated through a primary process tool fluid path; a secondary fluid path that diverts a portion of the persulfuric acid cleaning solution for electrolysis treatment thereof; an electrolysis reactor within the secondary fluid path that receives oxidant depleted sulfuric acid, the electrolysis reactor having electrodes that, when activated causes sulfate ions in the solution to be oxidized and form persulfate ions that are recombined with fluid from the primary fluid path and fed back to the cleaning vessel; and one or more controller devices in operative communication with the cleaning vessel and with the electrolysis reactor.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: October 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Richard O. Henry, David F. Hilscher, Sandi E. Merritt, Charles J. Taft, Robert W. Zigner, Jr.
  • Patent number: 9005464
    Abstract: A tool and method is provided for mixing multiple components and feeding a single blend of the multiple components into the tool. The method includes adjusting a concentration of etchant solution. The method includes determining an etch target for each batch of wafers of a plurality of batches of wafers entering an etch chamber of a wafer processing tool. The method further includes adjusting a concentration of 40% NH4F to 49% HF for the each batch of wafers of the plurality of batches of wafers entering the wafer processing tool during a single run.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Russell H. Arndt, David F. Hilscher
  • Patent number: 8992691
    Abstract: A method of implementing cleaning solution replacement in a recyclable fluid cleaning system for semiconductor wafers includes activating electrode current for an electrolysis reactor included in the cleaning system. At least one of electrode voltage and operating time for the electrolysis reactor is monitored, until a trigger point has been reached. The trigger point includes one of the electrode voltage reaching a predetermined threshold voltage value, a process time counter reaching a predetermined counter value, and a time value that the electrode voltage has been at the threshold voltage value reaching predetermined value. The process time counter is incremented based on one or more of actual wafer processing time, wafer type, number of wafers processed, and thickness of material to be stripped. Upon reaching the trigger point, the electrode current is deactivated, and at least a portion of cleaning system fluid is drained and replaced with fresh cleaning fluid.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Richard O. Henry, David F. Hilscher, Sandi E. Merritt, Charles J. Taft, Robert W. Zigner, Jr.
  • Patent number: 8940634
    Abstract: A method of forming overlapping contacts in a semiconductor device includes forming a first contact in a dielectric layer; etching the dielectric layer to form a recess adjacent to the first contact and removing a top portion of the first contact while etching the dielectric layer, wherein a bottom portion of the first contact remains in the dielectric layer after the recess is formed in the dielectric layer; and forming a second contact in the recess adjacent to the bottom portion of the first contact and on top of a top surface of the bottom portion of the first contact.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 27, 2015
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, Inc., STMicroelectronics, Inc.
    Inventors: Brett H. Engel, Lindsey Hall, David F. Hilscher, Randolph F. Knarr, Steven R. Soss, Jin Z. Wallner
  • Publication number: 20140308821
    Abstract: A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: International Business Machines Corporation
    Inventors: Takashi Ando, Michael P. Chudzik, Min Dai, Martin M. Frank, David F. Hilscher, Rishikesh Krishnan, Barry P. Linder, Claude Ortolland, Joseph F. Shepard, JR.
  • Patent number: 8835309
    Abstract: A method of performing a silicide contact process comprises a forming a nickel-platinum alloy (NiPt) layer over a semiconductor device structure; performing a first rapid thermal anneal (RTA) so as to react portions of the NiPt layer in contact with semiconductor regions of the semiconductor device structure, thereby forming metal rich silicide regions; performing a first wet etch to remove at least a nickel constituent of unreacted portions of the NiPt layer; performing a second wet etch using a dilute Aqua Regia treatment comprising nitric acid (HNO3), hydrochloric acid (HCl) and water (H2O) to remove any residual platinum material from the unreacted portions of the NiPt layer; and following the dilute Aqua Regia treatment, performing a second RTA to form final silicide contact regions from the metal rich silicide regions.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: David F. Hilscher, Christian Lavoie, Ahmet S. Ozcan
  • Publication number: 20140073130
    Abstract: A method of performing a silicide contact process comprises a forming a nickel-platinum alloy (NiPt) layer over a semiconductor device structure; performing a first rapid thermal anneal (RTA) so as to react portions of the NiPt layer in contact with semiconductor regions of the semiconductor device structure, thereby forming metal rich silicide regions; performing a first wet etch to remove at least a nickel constituent of unreacted portions of the NiPt layer; performing a second wet etch using a dilute Aqua Regia treatment comprising nitric acid (HNO3), hydrochloric acid (HCl) and water (H2O) to remove any residual platinum material from the unreacted portions of the NiPt layer; and following the dilute Aqua Regia treatment, performing a second RTA to form final silicide contact regions from the metal rich silicide regions.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David F. Hilscher, Christian Lavoie, Ahmet S. Ozcan
  • Publication number: 20140060596
    Abstract: A recyclable fluid cleaning system wafers includes a cleaning vessel configured to clean semiconductor wafers immersed in a bath of persulfuric acid cleaning solution, the cleaning solution circulated through a primary process tool fluid path; a secondary fluid path that diverts a portion of the persulfuric acid cleaning solution for electrolysis treatment thereof; an electrolysis reactor within the secondary fluid path that receives oxidant depleted sulfuric acid, the electrolysis reactor having electrodes that, when activated causes sulfate ions in the solution to be oxidized and form persulfate ions that are recombined with fluid from the primary fluid path and fed back to the cleaning vessel; and one or more controller devices in operative communication with the cleaning vessel and with the electrolysis reactor.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Richard O. Henry, David F. Hilscher, Sandi E. Merritt, Charles J. Taft, Robert W. Zigner, JR.
  • Publication number: 20130241070
    Abstract: A semiconductor device with overlapping contacts is provided. In one aspect, the semiconductor device includes a dielectric layer; a first contact located in the dielectric layer; and a second contact located in the dielectric layer adjacent to the first contact, wherein a portion of the second contact overlaps a top surface of the first contact.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Applicants: International Business Machines Corporation, STMicroelectronics, Inc., Globalfoundaries Inc.
    Inventors: Brett H. Engel, Lindsey Hall, David F. Hilscher, Randolph F. Knarr, Steven R. Soss, Jin Z. Wallner
  • Publication number: 20130001786
    Abstract: A method of forming overlapping contacts in a semiconductor device includes forming a first contact in a dielectric layer; etching the dielectric layer to form a recess adjacent to the first contact and removing a top portion of the first contact while etching the dielectric layer, wherein a bottom portion of the first contact remains in the dielectric layer after the recess is formed in the dielectric layer; and forming a second contact in the recess adjacent to the bottom portion of the first contact and on top of a top surface of the bottom portion of the first contact.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC.
    Inventors: Brett H. Engel, Lindsey Hall, David F. Hilscher, Randolph F. Knarr, Steven R. Soss, Jin Z. Wallner
  • Publication number: 20120326076
    Abstract: A tool and method is provided for mixing multiple components and feeding a single blend of the multiple components into the tool. The method includes adjusting a concentration of etchant solution. The method includes determining an etch target for each batch of wafers of a plurality of batches of wafers entering an etch chamber of a wafer processing tool. The method further includes adjusting a concentration of 40% NH4F to 49% HF for the each batch of wafers of the plurality of batches of wafers entering the wafer processing tool during a single run.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Russell H. ARNDT, David F. Hilscher
  • Publication number: 20120255577
    Abstract: A method of implementing cleaning solution replacement in a recyclable fluid cleaning system for semiconductor wafers includes activating electrode current for an electrolysis reactor included in the cleaning system. At least one of electrode voltage and operating time for the electrolysis reactor is monitored, until a trigger point has been reached. The trigger point includes one of the electrode voltage reaching a predetermined threshold voltage value, a process time counter reaching a predetermined counter value, and a time value that the electrode voltage has been at the threshold voltage value reaching predetermined value. The process time counter is incremented based on one or more of actual wafer processing time, wafer type, number of wafers processed, and thickness of material to be stripped. Upon reaching the trigger point, the electrode current is deactivated, and at least a portion of cleaning system fluid is drained and replaced with fresh cleaning fluid.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard O. Henry, David F. Hilscher, Sandi E. Merritt, Charles J. Taft, Robert W. Zigner, JR.
  • Patent number: 7482282
    Abstract: A method for cleaning oxide from the interconnects of a semiconductor that are comprised of nickel (Ni) silicide or nickel-silicide alloys where nickel is the primary metallic component is disclosed. The cleaning comprises performing an SC1 cycle, exposing the wafer comprising a NiSi contact to an SC1 solution. This removes oxygen atoms from the silicon oxide of the nickel silicide. Next, a rinse cycle is performed on the wafer to remove the SC1 solution. Finally, an HCl cycle is performed. During this cycle, the wafer comprising an NiSi contact is introduced to an HCl solution, removing oxygen atoms from the nickel oxide of the NiSi. The method of the present invention provides for lower contact resistance of NiSi semiconductor devices, facilitating semiconductor devices that have the benefits of miniaturization allowed by the NiSi technology, and higher performance due to the reduced contact resistance.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: David F. Hilscher, Ying Li
  • Publication number: 20080236617
    Abstract: A method for cleaning oxide from the interconnects of a semiconductor that are comprised of nickel (Ni) silicide or nickel-silicide alloys where nickel is the primary metallic component is disclosed. The cleaning comprises performing an SC1 cycle, exposing the wafer comprising a NiSi contact to an SC1 solution. This removes oxygen atoms from the silicon oxide of the nickel silicide. Next, a rinse cycle is performed on the wafer to remove the SC1 solution. Finally, an HCl cycle is performed. During this cycle, the wafer comprising an NiSi contact is introduced to an HCl solution, removing oxygen atoms from the nickel oxide of the NiSi. The method of the present invention provides for lower contact resistance of NiSi semiconductor devices, facilitating semiconductor devices that have the benefits of miniaturization allowed by the NiSi technology, and higher performance due to the reduced contact resistance.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David F. Hilscher, Ying Li