Patents by Inventor David F. Sorrells

David F. Sorrells has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130027128
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 31, 2013
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8351870
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 8, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8340618
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc.) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 25, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120319769
    Abstract: Multiple-Input-Single-Output (MISO) amplification and associated VPA control algorithms are provided herein. According to embodiments of the present invention, MISO amplifiers driven by VPA control algorithms outperform conventional outphasing amplifiers, including cascades of separate branch amplifiers using conventional power combiner technologies. MISO amplifiers can be operated at enhanced efficiencies over the entire output power dynamic range by blending the control of the power source, source impedances, bias levels, outphasing, and branch amplitudes. These blending constituents are combined to provide an optimized transfer characteristic function.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 20, 2012
    Applicant: ParkerVision, Inc.
    Inventors: Gregory S. Rawlins, David F. Sorrells
  • Patent number: 8334722
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 18, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120313713
    Abstract: A power supply is disclosed herein. For example, the power supply can include a switching device and an aperture generator and control module. The switching device can be configured to down-convert an input voltage and pass the down-converted input voltage to an output voltage node. The aperture generator and control module can be configured to control the switching device. In response to a power efficiency of the power supply exceeding a predetermined threshold, the aperture generator and control module can deactivate the switching device and pass the input voltage to the output voltage node.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: ParkerVision, Inc.
    Inventors: Gregory S. SILVER, David F. Sorrells, Gregory S. Rawlins
  • Publication number: 20120293252
    Abstract: Embodiments of the present invention include a method and system for control of a multiple-input-single output (MISO) device. For example, the method includes determining a change in power output level from a first power output level to a second power output level of the MISO device. The method also includes varying one or more weights associated with respective one or more controls of the MISO device to cause the change in power output.
    Type: Application
    Filed: August 2, 2012
    Publication date: November 22, 2012
    Inventors: David F. Sorrells, Gregory S. Rawlins
  • Patent number: 8315336
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: November 20, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8295406
    Abstract: A communication system comprising a multi-protocol, multi-bearer sub-system is described herein. The sub-system is a universal platform module that can transmit and receive one or more information signals in one or more protocols using one or more bearer services. In one embodiment, the sub-system may form a portion of a transceiver that is composed of a transmitter and a receiver, and which is a gateway server between a personal area network (PAN) and the global wireless network.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: October 23, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.
  • Patent number: 8295800
    Abstract: Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 23, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120256684
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals is individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 11, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8285229
    Abstract: Methods and systems for enhancing system efficiency in a power amplification, modulation, and transmission system are provided. Embodiments include determining output power characteristics of a selected modulation scheme to be employed in data transmission, determining a most probable output power point of operation for the selected modulation scheme based on the output power characteristics, and controlling the output stage power supply of the system to operate at substantially optimal efficiency at the most probable output power point of operation.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: October 9, 2012
    Assignee: ParkerVision, Inc.
    Inventors: Gregory S. Silver, David F. Sorrells, Gregory S. Rawlins
  • Patent number: 8280321
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 2, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120243637
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20120243643
    Abstract: A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to control signals that are phase shifted with respect to each other. The control signals may have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 27, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Michael J. Bultman, Robert W. Cook, Richad C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8271223
    Abstract: The present invention is related to multi-dimensional error definition, error measurement, error analysis, error function generation, error information optimization, and error correction for communication systems. Novel techniques are provided that can be applied to a myriad of applications for which an input to output transfer characteristic must be corrected or linearized. According to embodiments of the present invention, error can be described, processed, and geometrically interpreted. Compact formulations of error correction and calibration functions can be generated according to the present invention, which reduce memory requirements as well as computational time.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 18, 2012
    Assignee: ParkerVision, Inc.
    Inventors: Gregory S. Rawlins, David F. Sorrells
  • Publication number: 20120220254
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a emodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Application
    Filed: March 23, 2012
    Publication date: August 30, 2012
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, JR.
  • Patent number: 8238847
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: August 7, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8233858
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 31, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8233855
    Abstract: A method and system is described wherein an information signals is gated at a frequency that is a sub-harmonic of the frequency of the desired output signal. In the modulation embodiments, the information signal is modulated as part of the up-conversion process. In a first modulation embodiment, one information signal is phase modulated onto the carrier signal as part of the up-conversion process. In a second modulation embodiment, two information signals are multiplied, and, as part of the up-conversion process, one signal is phase modulated onto the carrier and the other signal is amplitude modulated onto the carrier. In a third modulation embodiment, one information signal is phase modulated onto the “I” phase of the carrier signal as part of the up-conversion process and a second information signal is phase modulated onto the “Q” phase of the carrier as part of the up-conversion process.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: July 31, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.