Patents by Inventor David F. Welch

David F. Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220123831
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: December 24, 2021
    Publication date: April 21, 2022
    Applicant: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11258508
    Abstract: A transmitter can include a laser operable to output an optical signal; a digital signal processor operable to receive data and provide a plurality of electrical signals based on the data; and a modulator operable to modulate the optical signal to provide a plurality of optical subcarriers based on the plurality of electrical signals. One of the plurality of subcarriers carries first information indicative of a first portion of the data in a first time slot and second information indicative of a second portion of the data in a second time slot. The first information is associated with a first node remote from the transmitter and the second information is associated with a second node remote from the transmitter. A receiver as well as a system also are described.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 22, 2022
    Assignee: Infinera Corporation
    Inventors: Amir Jafari, Kuang-Tsan Wu, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Patent number: 11258528
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: February 22, 2022
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11218217
    Abstract: Consistent the present disclosure, a network or system is provided in which a hub or primary node may communication with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity that may be greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed that receive data carrying optical signals from and supply data carrying optical signals to the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, and optical add/drop multiplexer, for example. Consistent with an aspect of the present disclosure, optical subcarriers may be transmitted over such connections. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: January 4, 2022
    Assignee: Infinera Corporation
    Inventors: Amir Jafari, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Patent number: 11095364
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: August 17, 2021
    Assignee: Infiriera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11095389
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating, transmitting, directing, receiving, and processing optical subcarriers. In some implementations, a system includes a Tier 1 switch that supplies a plurality of data channels; a transmitter that receives the plurality of data channels, the transmitter including an optical modulator that supplies a plurality of optical subcarriers based on the plurality of data channels; an optical platform that receives the plurality of optical subcarriers, the optical platform having a plurality of outputs, each of which supplying at least one of the plurality of subcarriers; a plurality of receivers, each receiving one or more of the plurality of optical subcarriers and supplying one or more of the plurality of data channels; and a plurality of servers, each of which receiving one or more of the plurality of data channels.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 17, 2021
    Assignee: Infiriera Corporation
    Inventors: Stuart Elby, David F. Welch
  • Patent number: 11075694
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: July 27, 2021
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20210211201
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: July 8, 2021
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20210091856
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: March 25, 2021
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200413169
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 31, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200403704
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 24, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. HAND, David F. Welch
  • Publication number: 20200403702
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 22, 2019
    Publication date: December 24, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200382216
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: September 23, 2019
    Publication date: December 3, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Publication number: 20200287651
    Abstract: A transmitter can include a laser operable to output an optical signal; a digital signal processor operable to receive data and provide a plurality of electrical signals based on the data; and a modulator operable to modulate the optical signal to provide a plurality of optical subcarriers based on the plurality of electrical signals. One of the plurality of subcarriers carries first information indicative of a first portion of the data in a first time slot and second information indicative of a second portion of the data in a second time slot. The first information is associated with a first node remote from the transmitter and the second information is associated with a second node remote from the transmitter. A receiver as well as a system also are described.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Amir Jafari, Kuang-Tsan Wu, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Publication number: 20200287648
    Abstract: Consistent the present disclosure, a network or system is provided in which a hub or primary node may communication with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity that may be greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed that receive data carrying optical signals from and supply data carrying optical signals to the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, and optical add/drop multiplexer, for example. Consistent with an aspect of the present disclosure, optical subcarriers may be transmitted over such connections. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Amir Jafari, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Publication number: 20200287649
    Abstract: Consistent the present disclosure, a network or system is provided in which a hub or primary node may communication with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity that may be greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed that receive data carrying optical signals from and supply data carrying optical signals to the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, and optical add/drop multiplexer, for example. Consistent with an aspect of the present disclosure, optical subcarriers may be transmitted over such connections. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Amir Jafari, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Publication number: 20200287621
    Abstract: A transmitter can include a laser operable to output an optical signal; a digital signal processor operable to receive user data and provide electrical signals based on the data; and a modulator operable to modulate the optical signal to provide optical subcarriers based on the electrical signals. A first one of the subcarriers carriers carries first TDMA encoded information and second TDMA encoded information, such that the first TDMA encoded information is indicative of a first portion of the data and is carried by the first one of the subcarriers during a first time slot, and the second TDMA encoded information is indicative of a second portion of the data and is carried by the first one of the subcarriers during a second time slot. The first TDMA encoded information is associated with a first node remote from the transmitter and the second TDMA encoded information is associated with a second node remote from the transmitter.
    Type: Application
    Filed: March 4, 2020
    Publication date: September 10, 2020
    Inventors: Amir Jafari, Kuang-Tsan Wu, David F. Welch, Steven Joseph Hand, Mohamed Osman
  • Publication number: 20200252154
    Abstract: Methods, systems, and apparatus for subcarrier modulation with radio frequency inphase-quadrature (IQ) modulators. A system includes a plurality of IQ modulators, each configured to receive an input electrical signal comprising an inphase signal and a quadrature signal, and each configured to modulate the inphase signal and quadrature signal based on one of a plurality of local oscillator signals to output a multiplexed signal. Each of the plurality of local oscillator signals is supplied by a respective one of a plurality of local oscillator circuits. A modulator circuit is configured to modulate a carrier optical signal from a laser having a frequency ?c based on the multiplexed signal to generate a modulated optical signal centered at frequency ?c and comprising a plurality of subcarriers. A center frequency of each of the plurality of subcarriers is offset from ?c by a frequency of said one of the plurality of local oscillator signals.
    Type: Application
    Filed: December 30, 2019
    Publication date: August 6, 2020
    Inventors: Kuang-Tsan Wu, Han Sun, Steven J. Hand, David F. Welch
  • Patent number: 10012797
    Abstract: A semiconductor monolithic transmitter photonic integrated circuit (TxPIC) comprises two different situations, either at least one signal channel in the PIC having a modulated source with the channel also extended to include at least one additional element or a plurality of modulated sources comprising N signal channels in the PIC of different transmission wavelengths, where N is equal to or greater than two (2), which may also approximate emission wavelengths along a standardized wavelength grid. In these two different situations, a common active region for such modulated sources and additional channel elements is identified as an extended identical active layer (EIAL), as it extends from a single modulated source to such additional channel elements in the same channel and/or extends to additional modulated sources in separate channels where the number of such channels is N equal to two or greater.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: July 3, 2018
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., Masaki Kato, Charles H. Joyner, David F. Welch, Randal A. Salvatore, Richard P. Schneider, Mehrdad Ziari, Damien Jean Henri Lambert, Sheila K. Hurtt, Andrew G. Dentai, Atul Mathur, Vincent G. Dominic
  • Patent number: 9971090
    Abstract: A laser source or a plurality of laser sources in a photonic integrated circuit (PIC) are provided with an electrical contact that is either segmented or is connected to a series of vernier resistor segments for supply of current to operate the laser source. In either case, at least one segment of the laser contact or at least one vernier resistor segment can be trimmed in order to vary the amount of current supplied to the laser source resulting in a change to its current density and, thus, a change in its operational wavelength while maintaining the current supplied to the laser source constant.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: May 15, 2018
    Assignee: Infinera Corporation
    Inventors: Fred A. Kish, Jr., Charles H. Joyner, David F. Welch