Patents by Inventor David F. Welch

David F. Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6148013
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop require to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: November 14, 2000
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6148014
    Abstract: A Group III-V semiconductor optoelectronic device provides for visible wavelength light output having a more laterally uniform, high power beam profile, albeit still quasi-Gaussian. A number of factors contribute to the enhanced profile including an improvement in reducing band offset of the Group III-V deposited layers improving carrier density through a decrease in the voltage drop required to generate carrier flow; reduction of contaminants in the growth of Group III-V AlGaInP-containing layers with compositional Al, providing for quality material necessary to achieve operation at the desired visible wavelengths; the formation of an optical resonator cavity that provides, in part, weak waveguiding of the propagating light; and the utilization of a mechanism to provide for beam spreading and filing in a beam diverging gain section prior to actively aggressive gain pumping of the propagating light in the device.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: November 14, 2000
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Ross A. Parke, David F. Welch
  • Patent number: 6130147
    Abstract: Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: October 10, 2000
    Assignee: SDL, Inc.
    Inventors: Jo S. Major, David F. Welch, Donald R. Scifres
  • Patent number: 6100546
    Abstract: III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: August 8, 2000
    Assignee: SDL, Inc.
    Inventors: Jo S. Major, David F. Welch, Donald R. Scifres
  • Patent number: 6081369
    Abstract: An optical amplifier system includes a fiber amplifier doped with rare earth dopant provided in its fiber core. A plurality of fiber lasers have their light outputs optically coupled together for launching into the fiber amplifier for optically pumping the amplifier. Each of the fiber lasers have a rare earth dopant provided in its fiber core for stimulated lasing emission with the rare earth dopant of the fiber amplifier being different from the rear earth dopant of the fiber lasers. A reflector may be provided in each of the coupling fibers for reflecting a portion of the respective light outputs back into the fiber lasers to control their wavelength of operation, the wavelength of operation of the reflectors chosen to be within a high absorption region of the absorption band of the fiber amplifier. Where the pump source is a semiconductor laser source, the source may include a flared gain section to increase the output intensity of the light output of the source.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: June 27, 2000
    Assignee: SDL., Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch
  • Patent number: 6049554
    Abstract: An external cavity, continuously tunable wavelength source comprising a coherent light source having an external cavity including a reflector, such as a mirror or right-angle prism, for reflecting a selected wavelength from a diffraction grating back into the coherent light source. The wavelength is selected by simultaneous rotation and linear translation of the reflector about a pivot point such that the optical path length of the external cavity is substantially identical to a numerical integer of half wavelengths at a plurality of tunable wavelengths about a central wavelength of a tunable bandwidth for the source such that cavity phase error is zero at the central wavelength and is maximally flat on either side of the center wavelength within the tunable bandwidth. The location of said pivot axis is chosen to set the cavity phase error equal to zero and its first and second derivatives substantially equal to zero at exactly one wavelength.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: April 11, 2000
    Assignee: SDL, Inc.
    Inventors: Robert J. Lang, David G. Mehuys, David F. Welch
  • Patent number: 6021141
    Abstract: A harmonic generator laser system which features a distributed Bragg reflector (DBR) or distributed feedback (DFB) tunable diode laser coupled to a quasi-phase matched (QPM) waveguide of optically nonlinear material. Tuning of the DBR laser may be achieved either thermally or via current injection, or both, halving the wavelength of a red laser into the visible blue spectral band. Thermal tuning may provide a coarse tuning adjustment, while injected current may provide fine tuning accessible to a user. Separately or in combination with current tuning, a modulation signal may be applied to the DBR laser for achieving an intensity modulated or a pulsed output. In another embodiment, modulation may be achieved by frequency modulation of the laser. A very compact tunable blue laser is formed. In yet another embodiment a double clad fiber amplifier is disposed between the tunable laser and the waveguide.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: February 1, 2000
    Assignee: SDL, Inc.
    Inventors: Derek W. Nam, David F. Welch, Robert G. Waarts, Jo S. Major
  • Patent number: 5933705
    Abstract: A surface of a compound III-V semiconductor device is passivated and protected, respectively, by treatment with a sulfur-containing or selenium-containing passivation film on the surface followed by the deposit of a GaN, GaP, InGaP, GaAsP, ZnS or ZnSe protection layer. Prior to passivation and deposition of the protective layer, previously formed contact metalizations may be protected with a liftoff film or layer. A low temperature MOCVD process is used to deposit the protection layer so that the integrity of the previously deposited contact metalization is maintained. The preferred range for MOCVD deposition of the protection layer is in the range of about 300.degree. C. to about 450.degree. C. This processing temperature range is within a temperature range where stable contact metalization exists.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: August 3, 1999
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Julian S. Osinski, David F. Welch, Donald R. Scifres
  • Patent number: 5933271
    Abstract: Two approaches are provided for achieving an optical amplifier system capable of producing high peak power, high energy pulse outputs while suppressing scattering noise. The first approach relates to an optical amplifier system which has at least one laser diode pulsed or cw pumped double clad fiber amplifier utilized for receiving a high frequency modulated injected signal pulse of short duration from the laser diode, via the fiber core, for amplification by coupling pump light into the inner cladding of the fiber. The average signal power is sufficient to saturate the gain of the fiber so as to minimize significant onset and buildup of forward and backward scattering noise. The duty cycle of the injected signal source pulse is chosen to allow adequate gain recovery in the fiber amplifier between pulses.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: August 3, 1999
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch
  • Patent number: 5914978
    Abstract: A semiconductor gain medium has an optical cavity comprising a multimode region permitting propagation of light with a diverging phase front and a single mode region. An optical cavity is formed by optical feedback within the medium. Preferably, the feedback comprises a combination of a cleaved facet and a grating. The gain medium may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: June 22, 1999
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5894492
    Abstract: A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an narrow aperture end whoch may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: April 13, 1999
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5867305
    Abstract: Two approaches are provided for achieving an optical amplifier system capable of producing high peak power, high energy pulse outputs while suppressing scattering noise. The first approach relates to an optical amplifier system which has at least one laser diode pulsed or cw pumped double clad fiber amplifier utilized for receiving a high frequency modulated injected signal pulse of short duration from the laser diode, via the fiber core, for amplification by coupling pump light into the inner cladding of the fiber. The average signal power is sufficient to saturate the gain of the fiber so as to minimize significant onset and buildup of forward and backward scattering noise. The duty cycle of the injected signal source pulse is chosen to allow adequate gain recovery in the fiber amplifier between pulses.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: February 2, 1999
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, Steven Sanders, David F. Welch, Donals R. Scifres
  • Patent number: 5864574
    Abstract: A semiconductor gain medium has an active gain region with a partially patterned radiation diverging region. The partially patterned radiation diverging region may be created with spatial resistive regions formed in a portion of the radiation diverging region having a narrower width than in other portions of the diverging region where the propagating radiation has a greater width. The gain region may be an amplifier or, in addition to the amplifier, may include a resonator cavity, or operate as an unstable resonator.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: January 26, 1999
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5799028
    Abstract: A surface of a compound III-V semiconductor device is passivated and protected, respectively, by treatment with a sulfur-containing or selenium-containing passivation film on the surface followed by the deposit of a GaN, GaP, InGaP, GaAsP, ZnS or ZnSe protection layer. Prior to passivation and deposition of the protective layer, previously formed contact metalizations may be protected with a liftoff film or layer. A low temperature MOCVD process is used to deposit the protection layer so that the integrity of the previously deposited contact metalization is maintained. The preferred range for MOCVD deposition of the protection layer is in the range of about 300.degree. C. to about 450.degree. C. This processing temperature range is within a temperature range where stable contact metalization exists.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: August 25, 1998
    Assignee: SDL, Inc.
    Inventors: Randall S. Geels, Julian S. Osinski, David F. Welch, Donald R. Scifres
  • Patent number: 5793521
    Abstract: An optical gain medium comprising, for example, an optical semiconductor device which is differentially pumped and a master oscillator power amplifier (MOPA) device employing such an amplifier. The gain medium may have a linear stripe region or a diverging stripe region that allows the light propagating therein to diverge along at least part of its length, such as a flared or tapered amplifier having a gain region that increases in width toward its output at a rate that equals or exceeds the divergence of the light. The amplifier is pumped with a current density at its input end which is smaller than the current density used to pump the output end for maintaining coherence of the beam to high power levels employing differential pumping.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: August 11, 1998
    Assignee: SDL Inc.
    Inventors: Stephen O'Brien, Alexander Schoenfelder, Robert J. Lang, Amos A. Hardy, Ross A. Parke, David F. Welch
  • Patent number: 5771252
    Abstract: An external cavity, continuously tunable wavelength source comprising a coherent light source having an external cavity including a reflector, such as a mirror or right-angle prism, for reflecting a selected wavelength from a diffraction grating back into the coherent light source. The wavelength is selected by simultaneous rotation and translational movement of the reflector about a pivot point such that the optical path length of the external cavity is substantially identical to a numerical integer of half wavelengths at a plurality of tunable wavelengths about a central wavelength of a tunable bandwidth for the source such that cavity phase error is zero at the central wavelength and is maximally flat on either side of the center wavelength within the tunable bandwidth. The location of said pivot axis is chosen to set the cavity phase error equal to zero and its first and second derivatives substantially equal to zero at exactly one wavelength.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: June 23, 1998
    Assignee: SDL, Inc.
    Inventors: Robert J. Lang, David G. Mehuys, David F. Welch
  • Patent number: 5761234
    Abstract: An optical amplifier pumping system with built-in redundant reliability for lightwave communication system provides plural levels of redundancy. A first level of redundancy deals with redundancy in the form of plural primary laser diode sources in the lightwave communication system. A second level of redundancy deals with redundancy of multiple single mode laser emitters on the same chip or bar sufficiently segmented so as not to interfere with operation of or cause failure to adjacent or neighboring emitters on the same chip or bar. A third level of deals with redundancy of a plurality of fiber pump sources for pumping a plurality of serially connected injection signal fiber amplifiers.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: June 2, 1998
    Assignee: SDL, Inc.
    Inventors: Richard R. Craig, Robert LG. Waarts, David F. Welch, John G. Endriz, Dirk J. Kuizenga, Steven Sanders
  • Patent number: 5715268
    Abstract: A travelling-wave semiconductor laser amplifier having suppressed self-oscillation is provided. When incorporated into a master oscillator power amplifier device, such a device has improved light output versus amplifier current characteristics. Also provided is a method for suppressing self-oscillation in travelling-wave semiconductor laser amplifier structures for improving the characteristics of the device into which the amplifier is incorporated.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: February 3, 1998
    Assignee: SDL, Inc.
    Inventors: Robert J. Lang, David F. Welch, Ross A. Parke, Donald R. Scifres
  • Patent number: 5703897
    Abstract: A semiconductor laser having a light amplifying diode heterostructure body having a single spatial mode aperture region or waveguide and a flared or tapered gain region having a narrow input end and wider output end provided in a resonant cavity, a portion of which cavity may be external of the body. The flared gain region has a narrow aperture end and a wide output end with narrow aperture end optically coupled to a single mode waveguide. A saturable aborbing region is formed as part of the single mode waveguide region and not between it and the flared gain section, and is reverse biased to provide for mode locked operation. The flared gain region and waveguide may be differentially pumped or modulated with current provided by separate contacts, and the flared gain region may be divided into one or more flared gain sections which may be differentially or separately pumped.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: December 30, 1997
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5696779
    Abstract: A wavelength tunable, semiconductor laser includes a gain region, e.g., a flared amplifier region, that permits light propagation with a diverging phase front along at least a portion of the gain region. Optical feedback defines a resonant laser cavity that has a first reflector at a first end of the cavity a second reflector at a second end of the cavity for reflecting at least a portion of the light back propagating in the cavity back into the cavity. Wavelength tuned selection, such as through orientation of a grating reflector or via a prism, is provided in the resonant laser cavity for producing a relatively lower optical loss in the cavity to a selected wavelength or a band of wavelengths of the light propagating within the cavity relative to other nonselected wavelengths such that stable laser oscillation is established at the selected wavelength or band of wavelengths.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: December 9, 1997
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres