Patents by Inventor David Ferrera

David Ferrera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090192455
    Abstract: Novel systems enable PTNA rapid exchange (RX) types of systems for ICAD, support balloon test occlusion, treatment of vasospasm after sub-arachnoid hemorrhage (SAH) and facilitate aneurysm neck remodeling during coiling embolization. The systems disclosed include an embodiment having a catheter comprising a RX port for providing catheter support within and above the carotid siphon and distal vertebral arteries, a conformable, semi-compliant balloon manipulable to gain forward progress through intracranial vessels substantially narrowed by plaque in combination with at least a guidewire, and a tip disposed at a distal end of the catheter.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 30, 2009
    Inventors: David Ferrera, John Fulkerson, Isa Rizk, Stephen Sosnowski
  • Publication number: 20090125053
    Abstract: Devices, methods and systems facilitate and enable vessel wall treatment, particularly at the neck of an aneurysm. A tethered cage-like structure functions in conjunction with supplemental therapies such as a vaso-occlusive coil delivering microcatheter system and/or pharmaceutical delivery, among other things, by stabilizing vessel walls and providing tethered cage-like therapeutic support for treating aneurysms, temporarily or on an implantable basis.
    Type: Application
    Filed: June 10, 2008
    Publication date: May 14, 2009
    Applicant: MINDFRAME, INC.
    Inventors: David A. Ferrera, John Fulkerson
  • Publication number: 20090105722
    Abstract: Devices, methods, and systems facilitate and enable treatment of ischemic stroke. More specifically, a tethered basket-like system operates in conjunction with a microcatheter system, to provide arterial support and capture emboli.
    Type: Application
    Filed: July 30, 2008
    Publication date: April 23, 2009
    Inventors: John Fulkerson, David A. Ferrera
  • Publication number: 20090105737
    Abstract: An acute stroke recanalization system and processes include catheter-based improved reconstrainable or tethered neurological devices which are deliverable through highly constricted and tortuous vessels, crossing the zone associated with subject thrombi/emboli, where deployment impacts, addresses or bridges the embolus, compacting the same into luminal walls which enables perfusion and lysis of the embolus, while the improved neurological medical device itself remains contiguous with the delivery system acting as a filter, basket or stand alone stenting mechanism, depending on the status of the embolus and other therapeutic aspects of the treatment being offered for consideration.
    Type: Application
    Filed: May 19, 2008
    Publication date: April 23, 2009
    Applicant: MINDFRAME, INC.
    Inventors: John Fulkerson, David A. Ferrera, Andrew Cragg
  • Patent number: 7331974
    Abstract: A vaso-occlusive device includes a microcoil formed into a minimum energy state secondary configuration comprising a plurality of curved segments, each defining a discrete axis, whereby the device, in its minimum energy state configuration, defines multiple axes. In a preferred embodiment, the minimum energy state secondary configuration comprises a plurality of tangentially-interconnected, substantially circular loops defining a plurality of discrete axes. In an alternative embodiment, the minimum energy state secondary configuration defines a wave-form like structure comprising a longitudinal array of laterally-alternating open loops defining a plurality of separate axes. In either embodiment, the device, in its minimum energy state secondary configuration, has a dimension that is substantially larger than the largest dimension of the vascular site in which the device is to be deployed.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: February 19, 2008
    Assignee: Microvention, Inc.
    Inventors: Dean Schaefer, Horacio Almazan, David A. Ferrera, Brian J. Cox, George R. Greene, Jr.
  • Patent number: 7326225
    Abstract: The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape. The radiopaque strand can have a core strand with a plurality of intermittently spaced apart enlarged radiopaque portions that may be a plurality of beads of radiopaque material spaced apart and mounted on the core strand, or a plurality of coils intermittently wound about and spaced apart on the core strand. A polyhedral occlusive device is also provided, adapted to be inserted into a portion of a vasculature for occluding a portion of the vasculature, for use in interventional therapy and vascular surgery.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: February 5, 2008
    Assignee: Micrus Endovascular Corporation
    Inventors: David A. Ferrera, Daniel R. Kurz, Lok A. Lei, Julia A. Larsen
  • Patent number: 7316701
    Abstract: The three dimensional, low friction vasoocclusive coil has a portion that is three dimensionally box or cubed shaped. The three dimensional box or cubed shaped portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The vasoocclusive device is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coil may optionally include a portion that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional portion.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: January 8, 2008
    Assignee: Micrus Endovascular Corporation
    Inventors: David A. Ferrera, Daniel Kurz, Peter Wilson, Crystal K. Sein-Lwyn, Lok A. Lei, Joseph A. Horton
  • Patent number: 7288112
    Abstract: An intravascular flow modifier and vascular reinforcement for treatment of aneurysms is formed of one or more loops of wire of resilient material formed into a series of transverse loops and longitudinal connecting sections to configure an essentially cylindrical reinforcement device that still allows, if desired, access to the neck of an aneurysm for insertion of embolic coils and the like. The proximal and distal regions of the sinusoidal loops may be more tightly coiled than the intermediate regions of the loops, or may have a larger diameter than the intermediate regions. The intravascular flow modifier and vascular reinforcement device can be provided with an outer covering that can be formed as a fiber, and can be woven, or can be formed as a ribbon wound about the intravascular flow modifier and vascular reinforcement device. The wire of resilient material can also be coated with a hydrophilic material. One or more round or oval intermediate loops extending radially outward may also be provided.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 30, 2007
    Assignee: Micrus Endovascular Corporation
    Inventors: Andrew J. Denardo, David A. Ferrera, Peter Wilson, Lok A. Lei
  • Publication number: 20070150045
    Abstract: Devices and methods are disclosed for placing a barrier across the neck of a vascular aneurysm, and specifically across the neck of a cerebrovascular aneurysm. The barrier is a stent or neck bridge that completely or partially blocks the flow of blood into the aneurysm and, further, prevents the migration of embolic coils out of the aneurysm and into the parent vessel. The neck bridge or stent of the present invention comprises elements for superior flexibility and stability when placed within the parent vessel. The neck bridge or stent of the present invention is loaded into the catheter by either being rolled tightly and sheathed or stretched to permit loading into the delivery catheter in a small, highly flexible configuration that may be advanced through the cerebrovasculature to pathological aneurysms.
    Type: Application
    Filed: February 23, 2007
    Publication date: June 28, 2007
    Inventor: David Ferrera
  • Publication number: 20070016233
    Abstract: The three-dimensional device is adapted to be inserted into a portion of a vasculature for occluding the portion of the vasculature for use in interventional therapy and vascular surgery. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand. The flexible strands in a multi-stranded micro-cable of the device can be helically wound, or can be configured as parallel, longitudinal strands, and can also be formed to have a secondary, three-dimensional therapeutic configuration, such as helical, conical, spherical, or other geometric shapes. The strands can be made of a shape memory nickel titanium alloy, that is highly flexible at a temperature appropriate for introduction into the body via a catheter, and that after placement will take on the therapeutic shape.
    Type: Application
    Filed: May 16, 2006
    Publication date: January 18, 2007
    Inventors: David Ferrera, Daniel Kurz, Lok Lei, Julia Larsen
  • Publication number: 20060265036
    Abstract: The variable stiffness heating catheter includes a heating catheter shaft including at least one electrically conductive member, a reinforcing tube with apertures formed around the surface of the reinforcing tube, and at least one coaxial outer layer of a polymer, metal, or both for providing desired variations in stiffness along at least a portion of the length of the shaft. The apertures can be formed as axial or helical slits in the surface of the reinforcing tube, and the reinforcing tube can also be formed to be tapered at the point where the apertures are formed in the reinforcing tube to provide a heating catheter that is torqueable and pushable at the proximal end, yet soft and flexible at the distal end.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 23, 2006
    Inventors: Michael O'Connor, David Ferrera, Matthew Connors
  • Publication number: 20060241686
    Abstract: The three dimensional, low friction vasoocclusive coil has a portion that is three dimensionally box or cubed shaped. The three dimensional box or cubed shaped portion will form a basket for filling the anatomical cavity at the site in the vasculature to be treated. The vasoocclusive device is formed from at least one strand of a flexible material formed to have a first inoperable, substantially linear configuration for insertion into and through a catheter or cannula to a desired portion of the vasculature to be treated, and a second operable, three dimensional configuration for occluding the desired portion of the vasculature to be treated. The vasoocclusive coil may optionally include a portion that is substantially J-shaped or helically shaped, for filling and reinforcing the three dimensional portion.
    Type: Application
    Filed: May 17, 2006
    Publication date: October 26, 2006
    Inventors: David Ferrera, Daniel Kurz, Peter Wilson, Crystal Sein-Lwyn, Lok Lei, Joseph Horton
  • Publication number: 20060184196
    Abstract: A vaso-occlusive device includes a microcoil formed into a minimum energy state secondary configuration comprising a plurality of curved segments, each defining a discrete axis, whereby the device, in its minimum energy state configuration, defines multiple axes. In a preferred embodiment, the secondary configuration-comprises a plurality of interconnected closed loops defining a plurality of discrete axes. In a second embodiment, the secondary configuration defines a wave-form like structure comprising an array of laterally-alternating open loops defining a plurality of separate axes. In a third embodiment, the secondary configuration forms a series of tangential closed loops, wherein the entire structure subtends a first angle of arc, and wherein each adjacent pair of loops defines a second angle of arc. In a fourth embodiment, the secondary configuration forms a logarithmic spiral.
    Type: Application
    Filed: April 5, 2006
    Publication date: August 17, 2006
    Applicant: MICROVENTION, INC.
    Inventors: Dean Schaefer, Brian Cox, George Greene, David Ferrera, Matthew Fitz, Robert Rosenbluth
  • Publication number: 20060184195
    Abstract: A vaso-occlusive device includes a microcoil formed into a minimum energy state secondary configuration comprising a plurality of curved segments, each defining a discrete axis, whereby the device, in its minimum energy state configuration, defines multiple axes. In a preferred embodiment, the secondary configuration comprises a plurality of interconnected closed loops defining a plurality of discrete axes. In a second embodiment, the secondary configuration defines a wave-form like structure comprising an array of laterally-alternating open loops defining a plurality of separate axes. In a third embodiment, the secondary configuration forms a series of tangential closed loops, wherein the entire structure subtends a first angle of arc, and wherein each adjacent pair of loops defines a second angle of arc. In a fourth embodiment, the secondary configuration forms a logarithmic spiral.
    Type: Application
    Filed: April 5, 2006
    Publication date: August 17, 2006
    Applicant: MICROVENTION, INC.
    Inventors: Dean Schaefer, Brain Cox, George Greene, David Ferrera, Matthew Fitz, Robert Rosenbluth
  • Patent number: 7070608
    Abstract: The vasoocclusive coil has a primary coil configuration with a helical loop at at least one end. The terminal helical loop can have a J-shaped configuration, preferably with a loop diameter of about 2 mm. The coil is preferably provided with helical loops at both ends, with helical loop at the proximal and distal ends of the coil acting as an anchor to prevent the coil from coming free from the location being treated and escaping into the vasculature. In a presently preferred embodiment both ends of the coil have a J-shape. In another presently preferred aspect, the vasoocclusive coil includes one or more loops intermediate the ends of the coil. The device is formed from a multi-stranded micro-cable having a plurality of flexible strands of a shape memory material and at least one radiopaque strand.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: July 4, 2006
    Assignee: Micrus Corporation
    Inventors: Daniel R. Kurz, David A. Ferrera, Peter Wilson
  • Patent number: 7066931
    Abstract: The variable stiffness heating catheter includes a heating catheter shaft including at least one electrically conductive member, a reinforcing tube with apertures formed around the surface of the reinforcing tube, and at least one coaxial outer layer of a polymer, metal, or both for providing desired variations in stiffness along at least a portion of the length of the shaft. The apertures can be formed as axial or helical slits in the surface of the reinforcing tube, and the reinforcing tube can also be formed to be tapered at the point where the apertures are formed in the reinforcing tube to provide a heating catheter that is torqueable and pushable at the proximal end, yet soft and flexible at the distal end.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 27, 2006
    Assignee: Micrus Corporation
    Inventors: Michael J. O'Connor, David A. Ferrera, Matthew Connors
  • Patent number: 7033374
    Abstract: A vaso-occlusive device includes a microcoil formed into a minimum energy state secondary configuration comprising a plurality of curved segments, each defining a discrete axis, whereby the device, in its minimum energy state configuration, defines multiple axes. In a preferred embodiment, the secondary configuration-comprises a plurality of interconnected closed loops defining a plurality of discrete axes. In a second embodiment, the secondary configuration defines a wave-form like structure comprising an array of laterally-alternating open loops defining a plurality of separate axes. In a third embodiment, the secondary configuration forms a series of tangential closed loops, wherein the entire structure subtends a first angle of arc, and wherein each adjacent pair of loops defines a second angle of arc. In a fourth embodiment, the secondary configuration forms a logarithmic spiral.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: April 25, 2006
    Assignee: Microvention, Inc.
    Inventors: Dean Schaefer, Brian J. Cox, George R. Greene, Jr., David A. Ferrera, Matthew Fitz, Robert F. Rosenbluth
  • Patent number: 7029486
    Abstract: A microcoil vaso-occlusive device has a minimum energy state secondary configuration having a plurality of curved segments, each defining a discrete axis. The secondary configuration may be a plurality of interconnected closed loops; an array of laterally-alternating open loops; a series of tangential closed loops; or a logarithmic spiral. The device, in its secondary cofiguration, has a dimension that is substantially larger than the largest dimension of the vascular site in which it is to be deployed. Thus, confinement of the device within the site causes it to assume a configuration with a higher energy state than the minimum energy state. Because the secondary configuration is larger (in at least one dimension) than the site, the device is constrained, by contact with the walls of the site, from returning to its secondary configuration, and shifting of the device due to blood flow is minimized.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 18, 2006
    Assignee: Microvention, Inc.
    Inventors: Dean Schaefer, Brian J. Cox, George R. Greene, Jr., David A. Ferrera, Matthew Fitz, Robert F. Rosenbluth
  • Patent number: 7026026
    Abstract: Balloons for use on medical devices such as catheter balloons are formed from polymer blend products which include a liquid crystal polymer (LCP), a crystallizable thermoplastic polymer, especially thermoplastic polyesters such as PET, and a compatabilizer. The compatabilizer may be an ethylene-maleic anhydride copolymer, an ethylene-methyl acrylate copolymer, an ethylene-methyl acrylate copolymer, an ethylene-methyl acrylate-maleic anhydride terpolymer, an ethylene-methyl-methacrylic acid terpolymer, an acrylic rubber, an ethylene-ethyl acrylate-glycidyl methacrylate terpolymer or a mixture of two or more such polymers.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 11, 2006
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David A. Ferrera, George C. Michaels, Ralph J. Barry, Lixiao Wang, Jianhua Chen
  • Patent number: 7014616
    Abstract: The composite guidewire includes an elongated, flexible core formed from a nickel titanium alloy, with a distal tapered portion, a reinforcement tube disposed over the proximal region of the core, a primary coil disposed over the tapered distal region of the core, and a coating of a heat shrinkable material. A distal tip is secured to the distal end of the core. The proximal reinforcement member has a distal tapered portion, to provide for a transition in stiffness of the guidewire. The heat shrinkable coating is formed from an elongated tube of PTFE, and the distal primary coil is formed from one or more nickel titanium alloy strands or wires, one or more platinum wires, or a combination. The distal tip may be formed of platinum or a tantalum filled epoxy.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: March 21, 2006
    Assignee: Micrus Corporation
    Inventor: David A. Ferrera