Patents by Inventor David Forehand

David Forehand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8309387
    Abstract: A method of making thermodynamically stable, diffusion-impeded barrier layers within, for example, a photovoltaic cell with a metal-containing electrical contact using exposure to fluorine. Exposing the cadmium telluride surface to fluorine creates a Te-poor barrier layer of cadmium fluoride. Once that barrier layer is formed, the metal-containing electrical contact may be applied or formed. The barrier layer allows tunneling current to occur between the p-type layer and the metal-containing electrical contact establishing a low-resistance, highly uniform, and thermally stable electrical contact.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: November 13, 2012
    Inventor: David Forehand
  • Patent number: 7498911
    Abstract: The present invention provides a method and apparatus for reducing temperature dependency within Microelectromechanical System (MEMS) switches. The two typical designs for such MEMS switches are fixed-fixed and fixed-free designs. Springs are used in the fixed-fixed design to account for dimensional changes as a result of thermal expansion. The fixed-free designs utilize a tether to prevent a cantilever arm from deforming as a result of thermal expansions, as well as reducing tight controls in the manufacture of fixed-free MEMS switches. Additionally, to prevent stiction in MEMS switches, a variegated electrode design is provided to utilize internal stresses of a suspended beam to increase the restoring force while not increasing the actuation force.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: March 3, 2009
    Assignee: Memtronics Corporation
    Inventor: David Forehand
  • Publication number: 20080251119
    Abstract: A method of making thermodynamically stable, diffusion-impeded barrier layers within, for example, a photovoltaic cell with a metal-containing electrical contact using exposure to fluorine. Exposing the cadmium telluride surface to fluorine creates a Te-poor barrier layer of cadmium fluoride. Once that barrier layer is formed, the metal-containing electrical contact may be applied or formed. The barrier layer allows tunneling current to occur between the p-type layer and the metal-containing electrical contact establishing a low-resistance, highly uniform, and thermally stable electrical contact.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 16, 2008
    Inventor: David Forehand
  • Publication number: 20050077987
    Abstract: The present invention provides a method and apparatus for reducing temperature dependency within Microelectromechanical System (MEMS) switches. The two typical designs for such MEMS switches are fixed-fixed and fixed-free designs. Springs are used in the fixed-fixed design to account for dimensional changes as a result of thermal expansion. The fixed-free designs utilize a tether to prevent a cantilever arm from deforming as a result of thermal expansions, as well as reducing tight controls in the manufacture of fixed-free MEMS switches. Additionally, to prevent stiction in MEMS switches, a variegated electrode design is provided to utilize internal stresses of a suspended beam to increase the restoring force while not increasing the actuation force.
    Type: Application
    Filed: February 24, 2004
    Publication date: April 14, 2005
    Inventor: David Forehand
  • Publication number: 20050012577
    Abstract: A micro-electro-mechanical (MEMS) switch (10, 110) has an electrode (22, 122) covered by a dielectric layer (23, 123), and has a flexible conductive membrane (31, 131) which moves between positions spaced from and engaging the dielectric layer. At least one of the membrane and dielectric layer has a textured surface (138) that engages the other thereof in the actuated position. The textured surface reduces the area of physical contact through which electric charge from the membrane can tunnel into and become trapped within the dielectric layer. This reduces the amount of trapped charge that could act to latch the membrane in its actuated position, which in turn effects a significant increase in the operational lifetime of the switch.
    Type: Application
    Filed: August 9, 2004
    Publication date: January 20, 2005
    Inventors: Brandon Pillans, David Forehand
  • Publication number: 20040166606
    Abstract: A method and apparatus are provided for encapsulated micro-devices. More particularly, Microelectromechanical Systems (MEMS) switches are encapsulated. The method and apparatus involve the creation of a cage structure over the micro-devices and the application of a low-temperature liquid protective material onto the cage and subsequent curing to form a hermetic micro-encapsulation. The technique and devices employ the use of conventional semiconductor manufacturing equipment that greatly increase productivity and reduces costs over more conventional techniques and devices for protect similar micro-devices.
    Type: Application
    Filed: December 3, 2003
    Publication date: August 26, 2004
    Inventor: David Forehand