Patents by Inventor David G. Coult
David G. Coult has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190342010Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Pleumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Publication number: 20190339468Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Pleumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Publication number: 20190342009Abstract: Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Applicant: Infinera CorporationInventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Jacco Ploumeekers, Timothy Butrie, David G. Coult, John W. Osenbach, Jie Tang, Jiaming Zhang
-
Patent number: 6625367Abstract: The present invention provides an optoelectronic device that includes an optical active layer formed over a substrate and an active region formed in the optical active layer. The optoelectronic device further includes a P-contact and an N-contact formed over a same side of the substrate and associated with the active region, the N-contact is located within a trench formed in the optical active layer and contacts the substrate within the trench.Type: GrantFiled: August 21, 2001Date of Patent: September 23, 2003Assignee: TriQuint Technology Holding Co.Inventors: David G. Coult, Gustav E. Derkits, Jr., Charles W. Lentz, Bryan P. Segner
-
Patent number: 6590913Abstract: A barrier layer is formed within a microfabricated device, such as a semiconductor laser assembly. The barrier layer is used to separate bonding material from an underlying layer that is located beneath the barrier layer. The barrier layer includes at least three thin layers that have alternating levels of electronegativity. Therefore, a significant amount of intermetallics are formed between the thin layers, thereby creating strong bonds between the thin layers at relatively low temperatures. It is difficult for the bonding material to break the strong bonds of the thin layers, and the bonding material is, therefore, prevented from penetrating the barrier layer and reacting with the underlying layer.Type: GrantFiled: May 14, 1999Date of Patent: July 8, 2003Assignee: TriQuint Technology Holding Co.Inventors: Bernard Caras, David G. Coult, Gustav E. Derkits, Charles Lentz, Debra L. Waltemyer
-
Publication number: 20020076187Abstract: The present invention provides an optoelectronic device and a method of manufacture therefor. The optoelectronic device includes an optical active layer formed over a substrate and an active region formed in the optical active layer. The optoelectronic device further includes a P-contact and an N-contact formed over a same side of the substrate and associated with the active region.Type: ApplicationFiled: August 21, 2001Publication date: June 20, 2002Applicant: Agere Systems Optoelectronics Guardian Corp.Inventors: David G. Coult, Gustav E. Derkits, Charles W. Lentz, Bryan P. Segner
-
Patent number: 6210546Abstract: Optical components, such as optical semi-isolators, are placed in a fixture that exposes at least a portion of the mounting surface of each optical component when a plasma or ion beam is directed at one side of the fixture, while shielding sensitive surfaces of the optical components (e.g., an optical element mounted within the frame of the optical component) from direct exposure to the plasma or ion beam. Exposure to the plasma or ion beam removes contaminants (e.g., metal oxide) that form on the mounting surface during the fabrication of the optical components when the optical element is mounted within its frame using glass solder in a heated oxygenated environment (e.g., air). By removing enough of the contaminants, the plasma or ion beam cleaning step produces optical components that can be reliably mounted onto substrates, such as the ceramic substrates used in encapsulated laser packages, using flux-less auto-bonding techniques.Type: GrantFiled: October 29, 1998Date of Patent: April 3, 2001Assignee: Lucent Technologies Inc.Inventors: David G. Coult, Gustav E. Derkits, Jr., Walter J. Shakespeare, Duane D. Wendling, Frederick A. Yeagle
-
Patent number: 5883730Abstract: An optical transceiver receives first light having a first wavelength and also receives second light having a second wavelength. The optical transceiver has a first surface for transmitting the first light along a first path and a second surface for reflecting the second light along or from the first path. The optical transceiver also receives third light having the first wavelength, and the first surface reflects the third light along a second path. The first and second surfaces may be combined as one surface.Type: GrantFiled: December 29, 1995Date of Patent: March 16, 1999Assignee: Lucent Technologies Inc.Inventors: David G. Coult, William Lewis Emkey, Alka G. Swanson
-
Patent number: 5625490Abstract: An optical coupler is disclosed which utilizes a pair of polarization selective filters to multiplex a message signal (of perhaps random polarization) with a pair of polarized pump signals onto a common signal path. The filters may be disposed within optical elements (e.g., cubes) which may be physically joined together to form a bulk optic device. An optical isolator may then be directly attached to the output of the bulk polarization independent optical coupler. The positioning of the pump signal inputs with respect to the filters provides either a co-propagating scheme or counter-propagating scheme.Type: GrantFiled: June 22, 1995Date of Patent: April 29, 1997Assignee: Lucent Technologies Inc.Inventors: David G. Coult, William L. Emkey, Curtis A. Jack, Michele A. Milbrodt
-
Patent number: 5082343Abstract: An isolated optical coupler arrangement is disclosed which is capable of providing a pump signal and a message signal to a fiber amplifier. The coupler comprises a pair of lenses with a wavelength selective device disposed therebetween. The wavelength selective device is chosen to reflect the pump signal applied as an input to the first lens, and transmit the applied message signal. An optical isolator is inserted in optical path between the wavelength selective device and the second lens to further improve the performance of the coupler.Type: GrantFiled: December 20, 1990Date of Patent: January 21, 1992Assignee: AT&T Bell LaboratoriesInventors: David G. Coult, Joel C. Masland, Michele A. Milbrodt