Patents by Inventor David G. Findley

David G. Findley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190116663
    Abstract: A printed wiring board includes a first layer comprising a first plurality of conductive graphene traces and insulating graphane arranged to separate the first plurality of conductive graphene traces. The printed wiring board also includes a second layer and a third layer. The second layer includes an insulating layer. The third layer includes a second plurality of conductive graphene traces and insulating graphane arranged to separate the second plurality of conductive graphene traces. The second layer is disposed between the first layer and the third layer.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 18, 2019
    Inventor: David G. Findley
  • Patent number: 9943979
    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: April 17, 2018
    Assignee: Lockheed Martin Corporation
    Inventor: David G. Findley
  • Patent number: 9504158
    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by deposition of layers of poly(hydridocarbyne). Each layer has the geometry of a cross section of the circuit board. The circuit board is further formed by pyrolysis of the layers of poly(hydridocarbyne) at a temperature greater than or equal to 100 degrees Celsius and less than or equal to 800 degrees Celsius. The apparatus additionally includes a plurality of tubes formed within the circuit board. The tubes have a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. Each tube is substantially hollow each layer of graphene forms an outer surface of the respective tube.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: November 22, 2016
    Assignee: Facebook, Inc.
    Inventor: David G. Findley
  • Publication number: 20160262262
    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by thermolysis of layers of a preceramic polymer. A plurality of tubes are formed within the circuit board and comprise a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. The apparatus also includes a plurality of optical waveguides formed within the circuit board. Each optical waveguide comprises a core of polycrystalline silicon carbide surrounded by polycrystalline diamond. The polycrystalline diamond is formed by thermolysis of poly(hydridocarbyne) and the silicon carbide is formed by thermolysis of poly(methylsilyne).
    Type: Application
    Filed: April 21, 2016
    Publication date: September 8, 2016
    Inventor: David G. Findley
  • Publication number: 20160214272
    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.
    Type: Application
    Filed: April 4, 2016
    Publication date: July 28, 2016
    Inventor: David G. Findley
  • Patent number: 9402322
    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by thermolysis of layers of a preceramic polymer. A plurality of tubes are formed within the circuit board and comprise a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. The apparatus also includes a plurality of optical waveguides formed within the circuit board. Each optical waveguide comprises a core of polycrystalline silicon carbide surrounded by polycrystalline diamond. The polycrystalline diamond is formed by thermolysis of poly(hydridocarbyne) and the silicon carbide is formed by thermolysis of poly(methylsilyne).
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: July 26, 2016
    Assignee: Lockheed Martin Corporation
    Inventor: David G. Findley
  • Patent number: 9302945
    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: April 5, 2016
    Assignee: Lockheed Martin Corporation
    Inventor: David G. Findley
  • Publication number: 20150301281
    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by thermolysis of layers of a preceramic polymer. A plurality of tubes are formed within the circuit board and comprise a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. The apparatus also includes a plurality of optical waveguides formed within the circuit board. Each optical waveguide comprises a core of polycrystalline diamond surrounded by silicon carbide. The polycrystalline diamond is formed by thermolysis of poly(hydridocarbyne) and the silicon carbide is formed by thermolysis of poly(methylsilyne).
    Type: Application
    Filed: April 22, 2014
    Publication date: October 22, 2015
    Inventor: David G. Findley
  • Publication number: 20150305158
    Abstract: According to some embodiments, an apparatus includes a circuit board made of polycrystalline diamond. The circuit board is formed by deposition of layers of poly(hydridocarbyne). Each layer has the geometry of a cross section of the circuit board. The circuit board is further formed by pyrolysis of the layers of poly(hydridocarbyne) at a temperature greater than or equal to 100 degrees Celsius and less than or equal to 800 degrees Celsius. The apparatus additionally includes a plurality of tubes formed within the circuit board. The tubes have a plurality of terminations at one or more surfaces of the circuit board. Each tube comprises a layer of graphene that is operable to permit each tube to conduct electrical current. Each layer of graphene is formed by thermolysis of the polycrystalline diamond circuit board at a temperature greater than or equal to 900 degrees Celsius. Each tube is substantially hollow each layer of graphene forms an outer surface of the respective tube.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 22, 2015
    Inventor: David G. Findley
  • Publication number: 20150251958
    Abstract: According to some embodiments, a method includes depositing alternating layers of a ceramic powder and a pre-ceramic polymer dissolved in a solvent. Each layer of the pre-ceramic polymer is deposited in a shape corresponding to a cross section of an object. The alternating layers of the ceramic powder and the pre-ceramic polymer are deposited until the layers of the pre-ceramic polymer form the shape of the object. The method includes heating the deposited ceramic powder and pre-ceramic polymer to at least a decomposition temperature of the pre-ceramic polymer. The decomposition temperature of the pre-ceramic polymer is less than a sintering temperature of the ceramic powder. The method further includes removing excess ceramic powder that the pre-ceramic polymer was not deposited onto.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Inventor: David G. Findley
  • Patent number: 6477855
    Abstract: A chiller tank system for containment of chilled liquids comprises a first tank and a second tank position within the first tank. The first tank is spaced apart from the second tank so that insulation material can be positioned between them The second tank defines a chamber for receiving the liquid to be chilled. A straight-lined, chiller barrel is positioned vertically within the chamber, the chiller barrel defining a bore connected to a flexible, dual hose. The straight-lined chiller barrel extends downward into the tank thereby evenly chilling the liquid to avoid thermal stratification that causes vaporization by creating warm spots within the liquid. A refrigeration unit supplies inert refrigerant to the tank.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: November 12, 2002
    Assignee: Severn Trent Services - Water Purification Solutions, Inc
    Inventors: David G. Findley, Brent Simmons
  • Publication number: 20020162351
    Abstract: A chiller tank system for containment of chilled liquids comprises a first tank and a second tank position within the first tank. The first tank is spaced apart from the second tank so that insulation material can be positioned between them The second tank defines a chamber for receiving the liquid to be chilled. A straight-lined, chiller barrel is positioned vertically within the chamber, the chiller barrel defining a bore connected to a flexible, dual hose. The straight-lined chiller barrel extends downward into the tank thereby evenly chilling the liquid to avoid thermal stratification that causes vaporization by creating warm spots within the liquid. A refrigeration unit supplies inert refrigerant to the tank.
    Type: Application
    Filed: April 29, 2002
    Publication date: November 7, 2002
    Applicant: Severn Trent Services Water Purification Solution, Inc.
    Inventors: David G. Findley, Brent Simmons