Patents by Inventor David G. Garrett

David G. Garrett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11208362
    Abstract: A system is used for additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 28, 2021
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 10662898
    Abstract: A thruster has an additively-manufactured housing that includes an integrally-formed nozzle with a burst disk in it. The housing is part of a casing that surrounds and encloses a propellant that is burned to produce pressurized gases that burst the burst disk and produce thrust. The thruster may be placed in a receptacle that defines a recess for receiving the thruster. The receptacle also may be additively manufactured. The thruster and the recess both may be cylindrical, with the housing being closely fit with the cylindrical walls of the receptacle. This may allow some of the structural loads on the housing, such as loads produced by the combustion of the propellant, to be transferred to the adjoining walls of the receptacle. This enables the housing to have less structural strength than if it were to have to contain the pressure from the propellant all on its own.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 26, 2020
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Baggs, Gaines S. Gibson
  • Patent number: 10615547
    Abstract: An electrical device has device electrical contacts that are initially shunted together, to prevent accidental triggering or damage to the device, such as by electrostatic forces. The device is configured to be inserted into a receptacle, with parts of the receptacle disengaging the shunt and making electrical connection within the receptacle, such as with a shunt cutter. The receptacle may also include a pair of receptacle electrical contacts the electrically connect to the device electrical contacts. The configuration, where the shunt is only cut as part of the installation process, enables safer handling of initially-shunted devices, and can also facilitate making blind electrical connections. Making blind connection directly with parts of the receptacle also avoids the need to thread wires through the electrical receptacle and make electrical connections in another way.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 7, 2020
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Bagg, Gaines S. Gibson
  • Publication number: 20200024210
    Abstract: A system is used for additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Application
    Filed: December 20, 2018
    Publication date: January 23, 2020
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 10436574
    Abstract: Technology for facilitating position determination is disclosed. A satellite with a known location can activate a light source on the satellite operable to emit light. The satellite can emit the light for a defined period of time to enable a receiver to detect the light and determine a geographical location using the light emitted from the satellite.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: October 8, 2019
    Assignee: Raytheon Company
    Inventors: Chris E. Geswender, David G. Garrett, William L. Chapman, James N. Head
  • Patent number: 10287218
    Abstract: A method of additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 14, 2019
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 10259756
    Abstract: A device may include an electrically-operated propellant or energetic gas-generating material, additively manufactured together with electrodes for producing a reaction in the material. The device may also include a casing that is additively manufactured with the other components. The additive manufacturing may be accomplished by extruding or otherwise depositing raw materials for the different components where desired. The electrodes may be made of a conductive polymer material, for example using an electrically-conductive fill in a polymer.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 16, 2019
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Patent number: 10247530
    Abstract: A projectile, such as a railgun-launched projectile, includes a single-piece body that is additively manufactured. The single piece body includes fuel within it, and one or more cavities for receiving an oxidizer. The body also defines one or more combustion chambers therein for combustion of the fuel and oxidizer as part of a divert thruster system. Thus the projectile is able to fully contain the divert thruster system within the single-piece body without using any hot gas seals as part of the system. The body may also define a cavity for receiving a pressurized fluid, used as part of a cold-gas attitude control system of the projectile. The body may also define passages between the pressurized fluid cavity and other parts of the attitude control system, such as valves and/or nozzles that are outside of the body, for example being aft of the one-piece body.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: April 2, 2019
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matthew H. Summers, David G. Garrett, Stephen M. Bagg
  • Patent number: 10046409
    Abstract: A method of making an electrical connection includes soldering using channels in a receptacle to direct hot air (or another hot gas) to effect soldering where the electrical connection is to be made. The connection may be made between device electrical contacts of an electrical device, and other contacts, such as receptacle contacts of the receptacle. The connection may be a blind connection, one in which the connected ends of the contacts are hidden or unable to be directly physically accessed, when the connection is made. The electrical connection may be made between device contacts of an electrical device that is inserted into the receptacle, and receptacle electrical contacts that are part of the receptacle. The channels for directing the hot gas to where the soldering occurs may be parts of the receptacle, for example being produced during additive manufacture of the receptacle.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: August 14, 2018
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Bagg, Gaines S. Gibson
  • Patent number: 10023505
    Abstract: A method of producing a propellant material element, such as an electrically-operated propellant material, includes extruding a propellant material through a heated nozzle. The nozzle may be heated to a temperature that is above the boiling point of a solvent that is part of the propellant material, yet is below a decomposition temperature of the propellant material. This allows some of the solvent to be driven off during the extruding process, while still preventing initiation of an energy-creating reaction within the material. The heating of the material in the extruding process, and especially the heating of the nozzle that the material is extruded through, may be controlled to remove an amount of solvent that results in the extruded material having desirable properties.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 17, 2018
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Publication number: 20180106218
    Abstract: A thruster has an additively-manufactured housing that includes an integrally-formed nozzle with a burst disk in it. The housing is part of a casing that surrounds and encloses a propellant that is burned to produce pressurized gases that burst the burst disk and produce thrust. The thruster may be placed in a receptacle that defines a recess for receiving the thruster. The receptacle also may be additively manufactured. The thruster and the recess both may be cylindrical, with the housing being closely fit with the cylindrical walls of the receptacle. This may allow some of the structural loads on the housing, such as loads produced by the combustion of the propellant, to be transferred to the adjoining walls of the receptacle. This enables the housing to have less structural strength than if it were to have to contain the pressure from the propellant all on its own.
    Type: Application
    Filed: September 8, 2016
    Publication date: April 19, 2018
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Baggs, Gaines S. Gibson
  • Publication number: 20180073842
    Abstract: A projectile, such as a railgun-launched projectile, includes a single-piece body that is additively manufactured. The single piece body includes fuel within it, and one or more cavities for receiving an oxidizer. The body also defines one or more combustion chambers therein for combustion of the fuel and oxidizer as part of a divert thruster system. Thus the projectile is able to fully contain the divert thruster system within the single-piece body without using any hot gas seals as part of the system. The body may also define a cavity for receiving a pressurized fluid, used as part of a cold-gas attitude control system of the projectile. The body may also define passages between the pressurized fluid cavity and other parts of the attitude control system, such as valves and/or nozzles that are outside of the body, for example being aft of the one-piece body.
    Type: Application
    Filed: July 22, 2016
    Publication date: March 15, 2018
    Inventors: Jeremy C. Danforth, Matthew H. Summers, David G. Garrett, Stephen M. Bagg
  • Publication number: 20180065202
    Abstract: A method of making an electrical connection includes soldering using channels in a receptacle to direct hot air (or another hot gas) to effect soldering where the electrical connection is to be made. The connection may be made between device electrical contacts of an electrical device, and other contacts, such as receptacle contacts of the receptacle. The connection may be a blind connection, one in which the connected ends of the contacts are hidden or unable to be directly physically accessed, when the connection is made. The electrical connection may be made between device contacts of an electrical device that is inserted into the receptacle, and receptacle electrical contacts that are part of the receptacle. The channels for directing the hot gas to where the soldering occurs may be parts of the receptacle, for example being produced during additive manufacture of the receptacle.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Baggs, Gaines S. Gibson
  • Publication number: 20180069352
    Abstract: An electrical device has device electrical contacts that are initially shunted together, to prevent accidental triggering or damage to the device, such as by electrostatic forces. The device is configured to be inserted into a receptacle, with parts of the receptacle disengaging the shunt and making electrical connection within the receptacle, such as with a shunt cutter. The receptacle may also include a pair of receptacle electrical contacts the electrically connect to the device electrical contacts. The configuration, where the shunt is only cut as part of the installation process, enables safer handling of initially-shunted devices, and can also facilitate making blind electrical connections. Making blind connection directly with parts of the receptacle also avoids the need to thread wires through the electrical receptacle and make electrical connections in another way.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Baggs, Gaines S. Gibson
  • Publication number: 20180044257
    Abstract: A method of additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Mathew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Publication number: 20170253536
    Abstract: A device may include an electrically-operated propellant or energetic gas-generating material, additively manufactured together with electrodes for producing a reaction in the material. The device may also include a casing that is additively manufactured with the other components. The additive manufacturing may be accomplished by extruding or otherwise depositing raw materials for the different components where desired. The electrodes may be made of a conductive polymer material, for example using an electrically-conductive fill in a polymer.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Publication number: 20170253537
    Abstract: A method of producing a propellant material element, such as an electrically-operated propellant material, includes extruding a propellant material through a heated nozzle. The nozzle may be heated to a temperature that is above the boiling point of a solvent that is part of the propellant material, yet is below a decomposition temperature of the propellant material. This allows some of the solvent to be driven off during the extruding process, while still preventing initiation of an energy-creating reaction within the material. The heating of the material in the extruding process, and especially the heating of the nozzle that the material is extruded through, may be controlled to remove an amount of solvent that results in the extruded material having desirable properties.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Publication number: 20160320174
    Abstract: Technology for facilitating position determination is disclosed. A satellite with a known location can activate a light source on the satellite operable to emit light. The satellite can emit the light for a defined period of time to enable a receiver to detect the light and determine a geographical location using the light emitted from the satellite.
    Type: Application
    Filed: April 28, 2015
    Publication date: November 3, 2016
    Inventors: Chris E. Geswender, David G. Garrett, William L. Chapman, James N. Head
  • Patent number: 9243914
    Abstract: Passively measured NEO bearings are used to augment an existing navigation system on-board the platform to correct the position estimate generated by the navigation system. The technology provides only a position correction based on passive NEO sightings but is applicable to a wide variety of platforms with different maneuvering profiles and update requirements. The technology directly calculates a position error based on the current position estimate and the passively measured and estimated bearings to three or more NEOs and provides the position error to the navigation system as a correction to the position estimate. The estimated bearings are computed from the current position estimate and the known orbits of the NEOs. The position error may be calculated from a single observation of multiple NEOs, allowing for frequent updates as needed and placing no restriction on platform maneuverability.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: January 26, 2016
    Assignee: Raytheon Company
    Inventors: David G. Garrett, Chris E. Geswender, Leonard D. Vance
  • Publication number: 20150362320
    Abstract: Passively measured NEO bearings are used to augment an existing navigation system on-board the platform to correct the position estimate generated by the navigation system. The technology provides only a position correction based on passive NEO sightings but is applicable to a wide variety of platforms with different maneuvering profiles and update requirements. The technology directly calculates a position error based on the current position estimate and the passively measured and estimated bearings to three or more NEOs and provides the position error to the navigation system as a correction to the position estimate. The estimated bearings are computed from the current position estimate and the known orbits of the NEOs. The position error may be calculated from a single observation of multiple NEOs, allowing for frequent updates as needed and placing no restriction on platform maneuverability.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: David G. Garrett, Chris E. Geswender, Leonard D. Vance