Patents by Inventor David G. Simpson

David G. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190342637
    Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslav Piotrowiak, Thomas George O?Connell, Arlene G. Doria
  • Publication number: 20190336053
    Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslav Piotrowiak, Thomas George O'Connell, Arlene G. Doria
  • Publication number: 20190328544
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: July 8, 2019
    Publication date: October 31, 2019
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Patent number: 10457912
    Abstract: Disclosed herein are systems, devices and methods for processing tissue, such as autologous tissue. Implementations of a Stromal Vascular Fraction (SVF) system are described that can isolate and wash harvested cells contained within various tissues, such as isolate and wash stem cells from fat tissue. The SVF system can minimize the handling and transferring of tissue and fluids, including minimizing the number of human interventions and manipulations required throughout processing. The SVF system can ensure sterility of processed tissue and harvested cells, as well as significantly reduce cost and time associated with the processing.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: October 29, 2019
    Inventors: Philip J. Simpson, David G. Matsuura, Darryl D'Lima, Daniel Kincade
  • Publication number: 20190262201
    Abstract: A patient support apparatus may include a support surface configured to conduct air along a top face of the support surface so that heat and moisture from a patient lying on the support surface are drawn away from the top face of the support surface. An opening may be formed in a side of the support surface. A cavity may extend from the opening into the support surface. An inlet port may be positioned within the cavity and fluidly coupled to the top face. A blower assembly may be configured to position within the cavity. The blower assembly may have an outlet port that couples to the inlet port when the blower assembly is positioned within the cavity. The blower assembly may conduct air through the inlet port to the top face of the support surface.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Inventors: Darrell L. Borgman, Douglas E. Borgman, Arpit Shah, Wui Hsien Wong, Keith Moores, Jason M. Gilreath, Michael R. Montini, Charles A. Lachenbruch, Eric R. Meyer, Frank E. Sauser, Catherine M. Wagner, Rachel L. Williamson, Brandon P. Fisk, Jason B. Grace, Brian Guthrie, Nicole Johannigman, Gregory J. Shannon, David C. Newkirk, Michael Churilla, Jnanesha Ramegowda, Taylor Franklin, Kathryn R. Smith, John G. Byers, Frederick K. Schultz, Andrew R. Wager, Sridhar Karimpuzha Seshadri, Gary R. Gibbons, Scott M. Corbin, John Goewert, Thomas L. Simpson, Faron L. Blessing, James D. Voll, Kin Meng Choi, Stephen S. Amrhein, Herve Gautier, Jean-Francois Lellig, Philippe Kaikenger, Matthieu Guetta
  • Patent number: 10342673
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: July 9, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Patent number: 9399082
    Abstract: The invention generally relates to dextran fibers which are preferably electrospun and devices formed from such fibers. In particular, such devices may include substances of interest (such as therapeutic substances) associated with the electrospun fibers. Upon exposure to a liquid the electrospun fibers dissolve immediately and the substances of interest are released into the liquid. Exemplary devices include bandages formed from electrospun dextran fibers and associated agents that promote hemostasis, such as thrombin and fibrinogen.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: July 26, 2016
    Assignees: The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Virginia Commonwealth University
    Inventors: Gary L. Bowlin, David G. Simpson, James R. Bowman, Stephen W. Rothwell
  • Patent number: 8586345
    Abstract: The invention is directed to formation and use of electroprocessed collagen, including use as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed collagen may also be combined with other molecules in order to deliver substances to the site of application or implantation of the electroprocessed collagen. The collagen or collagen/cell suspension is electrodeposited onto a substrate to form tissues and organs.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 19, 2013
    Assignee: Virginia Commonwealth University Intellectual Property Foundation
    Inventors: David G. Simpson, Gary L. Bowlin, Gary E. Wnek, Peter J. Stevens, Marcus E. Carr, Jamil A. Matthews, Saravanamoorthy Rajendran
  • Publication number: 20130178949
    Abstract: Electrospun materials are fabricated using air-flow impedance technology, which results in the production of scaffolds in which some regions are dense with low porosity and others regions are less dense and more porous. The dense regions provide structural support for the scaffold while the porous regions permit entry of cells and other materials into the scaffold, e.g. when used for tissue engineering.
    Type: Application
    Filed: June 28, 2011
    Publication date: July 11, 2013
    Applicant: Virginia Commonwealth University
    Inventors: Gary L. Bowlin, Michael J. McClure, David G. Simpson, Hu Yang
  • Publication number: 20110288026
    Abstract: The invention is directed to formation and use of electroprocessed collagen, including use as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed collagen may also be combined with other molecules in order to deliver substances to the site of application or implantation of the electroprocessed collagen. The collagen or collagen/cell suspension is electrodeposited onto a substrate to form tissues and organs.
    Type: Application
    Filed: March 21, 2011
    Publication date: November 24, 2011
    Inventors: David G. Simpson, Gary L. Bowlin, Gary E. Wnek, Peter J. Stevens, Marcus E. Carr, Jamil A. Matthews, Saravanamoorthy Rajendran
  • Publication number: 20110280841
    Abstract: The invention is directed to novel compositions comprising an electroprocessed material and a substance, their formation and use. The electroprocessed material can, for example, be one or more natural materials, one or more synthetic materials, or a combination thereof. The substance can be one or more therapeutic or cosmetic substances or other compounds, molecules, cells, vesicles. The compositions can be used in substance delivery, including drug delivery within an organism by, for example, releasing substances or containing cells that release substances. The compositions can be used for other purposes, such as prostheses or similar implants.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 17, 2011
    Applicant: Virginia Commonwealth University Intellectual Property Foundation
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson
  • Publication number: 20110150973
    Abstract: The invention generally relates to dextran fibers which are preferably electrospun and devices formed from such fibers. In particular, such devices may include substances of interest (such as therapeutic substances) associated with the electrospun fibers. Upon exposure to a liquid the electrospun fibers dissolve immediately and the substances of interest are released into the liquid. Exemplary devices include bandages formed from electrospun dextran fibers and associated agents that promote hemostasis, such as thrombin and fibrinogen.
    Type: Application
    Filed: April 10, 2009
    Publication date: June 23, 2011
    Inventors: Gary L. Bowlin, David G. Simpson, James R. Bowman, Stephen W. Rothwell
  • Publication number: 20100310658
    Abstract: The invention is directed to formation and use of electroprocessed fibrin as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed fibrin may also be combined with other molecules in order to deliver the molecules to the site of application or implantation of the electroprocessed fibrin. The fibrin or fibrin/cell suspension is electrodeposited onto a substrite to form the tissues and organs.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 9, 2010
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson, Philippe Lam, Marcus E. Carr, JR.
  • Publication number: 20100291058
    Abstract: The present invention relates to sealants for skin and other tissues. The sealants include an electroprocessed material. The sealants may contain more than one electroprocessed materials and may contain additional substances. The invention further relates to methods of making and using such sealants.
    Type: Application
    Filed: April 12, 2010
    Publication date: November 18, 2010
    Applicants: Virginia Commonwealth University, Nanomatrix, Inc.
    Inventors: Gary L. Bowlin, David G. Simpson, Gary E. Wnek, Marcus E. Carr, JR., Peter J. Stevens, Gary Cadd, I. Kelman Cohen
  • Patent number: 7759082
    Abstract: The invention is directed to formation and use of electroprocessed fibrin as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed fibrin may also be combined with other molecules in order to deliver the molecules to the site of application or implantation of the electroprocessed fibrin. The fibrin or fibrin/cell suspension is electrodeposited onto a substrate to form the tissues and organs.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: July 20, 2010
    Assignee: Virginia Commonwealth University Intellectual Property Foundation
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson, Philippe Lam, Marcus E. Carr, Jr.
  • Patent number: 7615373
    Abstract: The invention is directed to formation and use of electroprocessed collagen, including use as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed collagen may also be combined with other molecules in order to deliver substances to the site of application or implantation of the electroprocessed collagen. The collagen or collagen/cell suspension is electrodeposited onto a substrate to form tissues and organs.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: November 10, 2009
    Assignees: Virginia Commonwealth University Intellectual Property Foundation, Organogenesis, Inc.
    Inventors: David G. Simpson, Gary L. Bowlin, Gary E. Wnek, Peter J. Stevens, Marcus E. Carr, Jamil A. Matthews, Saravanamoorthy Rajendran
  • Publication number: 20080159985
    Abstract: The invention is directed to novel compositions comprising an electroprocessed material and a substance, their formation and use. The electroprocessed material can, for example, be one or more natural materials, one or more synthetic materials, or a combination thereof. The substance can be one or more therapeutic or cosmetic substances or other compounds, molecules, cells, vesicles. The compositions can be used in substance delivery, including drug delivery within an organism by, for example, releasing substances or containing cells that release substances. The compositions can be used for other purposes, such as prostheses or similar implants.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 3, 2008
    Applicant: Virginia Commonwealth University Intellectual Property Foundation
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson
  • Patent number: 7374774
    Abstract: The invention is directed to novel compositions comprising an electroprocessed material and a substance, their formation and use. The electroprocessed material can, for example, be one or more natural materials, one or more synthetic materials, or a combination thereof. The substance can be one or more therapeutic or cosmetic substances or other compounds, molecules, cells, vesicles. The compositions can be used in substance delivery, including drug delivery within an organism by, for example, releasing substances or containing cells that release substances. The compositions can be used for other purposes, such as prostheses or similar implants.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: May 20, 2008
    Assignee: Virginia Commonwealth University Intellectual Property Foundation
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson
  • Publication number: 20040229333
    Abstract: The invention is directed to formation and use of electroprocessed fibrin as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or tissues which may be implanted into a recipient. The electroprocessed fibrin may also be combined with other molecules in order to deliver the molecules to the site of application or implantation of the electroprocessed fibrin. The fibrin or fibrin/cell suspension is electrodeposited onto a substrate to form the tissues and organs.
    Type: Application
    Filed: January 26, 2004
    Publication date: November 18, 2004
    Inventors: Gary L. Bowlin, Gary E. Wnek, David G. Simpson, Philippe Lam, Marcus E. Carr
  • Patent number: 6787357
    Abstract: The invention is directed to use of fibrin as an extracellular matrix and, together with cells, its use in forming engineered tissue. The engineered tissue can include the synthetic manufacture of specific organs or “organ-like” tissue. A preferred embodiment is a plasma-derived fibrin matrix containing cells.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 7, 2004
    Assignee: Virginia Commonwealth University
    Inventors: Gary L. Bowlin, Gary Wnek, David G. Simpson, Philippe Lam, Marcus E. Carr, Helen Fillmore