Patents by Inventor David Gaensbauer

David Gaensbauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210372470
    Abstract: A non-contact steering device includes one or more magnetic rotors positioned near a metal strip. Each rotor includes one or more permanent magnets and rotates to impart a changing magnetic field on the metal strip passing nearby. The magnetic rotors can rotate around an axis of rotation that is parallel to the longitudinal direction of travel of the metal strip. The magnetic rotors can be positioned to impart forces on the strip in any combination of laterally, vertically, or longitudinally. A control mechanism can control the rotor speed, rotor direction, vertical position of the rotors, vertical spacing between rotors, and/or lateral position of the rotors. In some cases, the control mechanism can be coupled to sensors, such as a light curtain and a laser distance sensor, in order to provide closed loop feedback control of a metal strip passing through the non-contact magnetic rotor steering device.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Applicant: Novelis Inc.
    Inventors: Michael Kosmicki, Michael Bommarito, David Gaensbauer, Robert Bruce Wagstaff, David Michael Custers
  • Patent number: 11125271
    Abstract: A method of steering a moving metal strip by positioning one or more magnetic rotors near a metal strip. Each rotor includes one or more permanent magnets and rotates to impart a changing magnetic field on the metal strip passing nearby. The magnetic rotors can rotate around an axis of rotation that is parallel to the longitudinal direction of travel of the metal strip. The magnetic rotors can be positioned to impart forces on the strip in any combination of laterally, vertically, or longitudinally. A control mechanism can control the rotor speed, rotor direction, vertical position of the rotors, vertical spacing between rotors, and/or lateral position of the rotors. In some cases, the control mechanism can be coupled to sensors, such as a light curtain and a laser distance sensor, in order to provide closed loop feedback control of a metal strip passing through the non-contact magnetic rotor steering device.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: September 21, 2021
    Assignee: NOVELIS INC.
    Inventors: Michael Kosmicki, Michael Bommarito, David Gaensbauer, Robert Bruce Wagstaff, David Michael Custers
  • Publication number: 20200332834
    Abstract: A non-contact steering device includes one or more magnetic rotors positioned near a metal strip. Each rotor includes one or more permanent magnets and rotates to impart a changing magnetic field on the metal strip passing nearby. The magnetic rotors can rotate around an axis of rotation that is parallel to the longitudinal direction of travel of the metal strip. The magnetic rotors can be positioned to impart forces on the strip in any combination of laterally, vertically, or longitudinally. A control mechanism can control the rotor speed, rotor direction, vertical position of the rotors, vertical spacing between rotors, and/or lateral position of the rotors. In some cases, the control mechanism can be coupled to sensors, such as a light curtain and a laser distance sensor, in order to provide closed loop feedback control of a metal strip passing through the non-contact magnetic rotor steering device.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Applicant: Novelis Inc.
    Inventors: Michael Kosmicki, Michael Bommarito, David Gaensbauer, Robert Bruce Wagstaff, David Michael Custers
  • Patent number: 10738828
    Abstract: A non-contact steering device includes one or more magnetic rotors positioned near a metal strip. Each rotor includes one or more permanent magnets and rotates to impart a changing magnetic field on the metal strip passing nearby. The magnetic rotors can rotate around an axis of rotation that is parallel to the longitudinal direction of travel of the metal strip. The magnetic rotors can be positioned to impart forces on the strip in any combination of laterally, vertically, or longitudinally. A control mechanism can control the rotor speed, rotor direction, vertical position of the rotors, vertical spacing between rotors, and/or lateral position of the rotors. In some cases, the control mechanism can be coupled to sensors, such as a light curtain and a laser distance sensor, in order to provide closed loop feedback control of a metal strip passing through the non-contact magnetic rotor steering device.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: August 11, 2020
    Assignee: Novelis Inc.
    Inventors: Michael Kosmicki, Michael Bommarito, David Gaensbauer, Robert Bruce Wagstaff, David Michael Custers
  • Patent number: 10166584
    Abstract: Control of self-excited third octave vibration in a metal rolling mill can be achieved by adjusting the tension of the metal strip as it enters a stand. Self-excited third octave vibration can be detected and/or measured by one or more sensors. A high-speed tension adjustor can rapidly adjust the entry tension of the metal strip (e.g., as the metal strip enters a mill stand) to compensate for the detected self-excited third octave vibration. High-speed tension adjustors can include any combination of hydraulic or piezoelectric actuators coupled to the center roll of a bridle roll to rapidly raise or lower the roll and thus induce rapid tension adjustments in the strip. Other high-speed tension adjustors can be used.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: January 1, 2019
    Assignee: Novelis Inc.
    Inventors: Rodger Brown, Matthew Seibert, Donald L. Miller, Matthew Fairlie, David Gaensbauer
  • Patent number: 9925575
    Abstract: A rolling mill with oil-cooled top and bottom work rolls at the entry side and a water spray header at the exit side of the bottom work roll. Water cooling is used below the pass line, reducing the heat in the mill substantially without the risk of generating drip-related surface defects during rolling. Water cooling can be used on the bottom work roll and a portion of the oil no longer needed to cool the bottom work roll can be diverted to the top work roll. In some cases, the coolant portion of the flatness control can be operated solely through water-cooling the bottom roll.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: March 27, 2018
    Assignee: Novelis Inc.
    Inventors: David Gaensbauer, Jim McNeil
  • Publication number: 20160363164
    Abstract: A non-contact steering device includes one or more magnetic rotors positioned near a metal strip. Each rotor includes one or more permanent magnets and rotates to impart a changing magnetic field on the metal strip passing nearby. The magnetic rotors can rotate around an axis of rotation that is parallel to the longitudinal direction of travel of the metal strip. The magnetic rotors can be positioned to impart forces on the strip in any combination of laterally, vertically, or longitudinally. A control mechanism can control the rotor speed, rotor direction, vertical position of the rotors, vertical spacing between rotors, and/or lateral position of the rotors. In some cases, the control mechanism can be coupled to sensors, such as a light curtain and a laser distance sensor, in order to provide closed loop feedback control of a metal strip passing through the non-contact magnetic rotor steering device.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 15, 2016
    Applicant: Novelis Inc.
    Inventors: Michael Kosmicki, Michael Bommarito, David Gaensbauer, Robert Bruce Wagstaff, David Michael Custers
  • Publication number: 20160016215
    Abstract: Control of self-excited third octave vibration in a metal rolling mill can be achieved by adjusting the tension of the metal strip as it enters a stand. Self-excited third octave vibration can be detected and/or measured by one or more sensors. A high-speed tension adjustor can rapidly adjust the entry tension of the metal strip (e.g., as the metal strip enters a mill stand) to compensate for the detected self-excited third octave vibration. High-speed tension adjustors can include any combination of hydraulic or piezoelectric actuators coupled to the center roll of a bridle roll to rapidly raise or lower the roll and thus induce rapid tension adjustments in the strip. Other high-speed tension adjustors can be used.
    Type: Application
    Filed: July 15, 2015
    Publication date: January 21, 2016
    Applicant: NOVELIS INC.
    Inventors: Rodger Brown, Matthew Seibert, Donald L. Miller, Matthew Fairlie, David Gaensbauer
  • Publication number: 20150321235
    Abstract: A rolling mill with oil-cooled top and bottom work rolls at the entry side and a water spray header at the exit side of the bottom work roll. Water cooling is used below the pass line, reducing the heat in the mill substantially without the risk of generating drip-related surface defects during rolling. Water cooling can be used on the bottom work roll and a portion of the oil no longer needed to cool the bottom work roll can be diverted to the top work roll. In some cases, the coolant portion of the flatness control can be operated solely through water-cooling the bottom roll.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 12, 2015
    Applicant: NOVELIS INC.
    Inventors: David Gaensbauer, Jim McNeil
  • Patent number: 8961864
    Abstract: Exemplary embodiments of the invention include a method and apparatus for cooling a metal strip that is being advanced in a generally horizontal fashion. The method involves delivering a coolant liquid onto a lower surface of the strip from below across the entire width of the strip, preventing the coolant liquid from contacting the upper surface of the strip, and optionally subsequently removing the coolant liquid from the lower surface. The coolant liquid is prevented from contacting the upper surface by forming a gas-directing channel immediately above the upper surface of the strip adjacent to one or preferably both lateral edges of the strip and forcing a gas through the channel in a direction generally away from a center of the strip towards the one or both lateral edges to deflect coolant liquid away from the upper surface of the strip. The apparatus provides means for carrying out these steps.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 24, 2015
    Assignee: Novelis Inc.
    Inventors: Rejean Lemay, Andrew Hobbis, Heinz Becker, David Gaensbauer
  • Publication number: 20120235331
    Abstract: Exemplary embodiments of the invention include a method and apparatus for cooling a metal strip that is being advanced in a generally horizontal fashion. The method involves delivering a coolant liquid onto a lower surface of the strip from below across the entire width of the strip, preventing the coolant liquid from contacting the upper surface of the strip, and optionally subsequently removing the coolant liquid from the lower surface. The coolant liquid is prevented from contacting the upper surface by forming a gas-directing channel immediately above the upper surface of the strip adjacent to one or preferably both lateral edges of the strip and forcing a gas through the channel in a direction generally away from a center of the strip towards the one or both lateral edges to deflect coolant liquid away from the upper surface of the strip. The apparatus provides means for carrying out these steps.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Inventors: Rejean Lemay, Andrew Hobbis, Heinz Becker, David Gaensbauer
  • Publication number: 20090193869
    Abstract: Exemplary embodiments of the invention relate to a container blank of defined shape, a method of feeding the blanks, and apparatus for feeding the blanks. The blanks are shaped or contoured in such a way that mutual adhesion between the blanks of a nested stack of such blanks can be broken, thus facilitating the delivery of individual blanks from the stack. The shaping of the blanks is effective to cause the blanks to separate from each other or to tilt mutually by a small distance when one blank is moved at approximately right angles to the stack. This allows ingress of air between the blanks that eliminates the mutual adhesion.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 6, 2009
    Inventors: David Gaensbauer, David Andrew Gill