Patents by Inventor David Geoffrey Dauenhauer

David Geoffrey Dauenhauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10807738
    Abstract: One example aspect of the present disclosure is directed to a method for enhancing a maintenance operation routine. The method includes receiving, at one or more processors, engine history data. The method includes comparing, at the one or more processors, the received engine history data to expected engine history data. The method includes determining, at the one or more processors, an expected effectiveness of a plurality of maintenance operation types based on the comparison. The method includes selecting, at the one or more processors, one of the plurality of maintenance operation types based on the determinations. The method includes transmitting, at the one or more processors, a signal indicative of a notification of the selected maintenance operation type.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 20, 2020
    Assignee: General Electric Company
    Inventors: David Geoffrey Dauenhauer, Ronald Matthew DiMuro, Peter Andrew Flynn, Michael Edward Eriksen
  • Publication number: 20190153890
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Patent number: 10227891
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 12, 2019
    Assignee: General Electric Company
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Publication number: 20180283209
    Abstract: A wash system for a gas turbine engine includes a foam generating device configured for receiving and aerating a flow of wash fluid to generate a flow of foamed wash fluid having particular foam characteristics. The flow of foamed wash fluid passes through a distribution manifold where it is selectively directed through a plurality of wash lines to desired portions of the gas turbine engine. The wash system further includes a controller configured for manipulating the foam characteristics of the flow of foamed wash fluid and using the distribution manifold to selectively direct the flow of foamed wash fluid to desired portions of the gas turbine engine for optimal cleaning and improved engine efficiency.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 4, 2018
    Inventors: Michael Edward Eriksen, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Byron Andrew Pritchard, JR., David Geoffrey Dauenhauer, Bernard Patrick Bewlay, Nicole Jessica Tibbetts
  • Publication number: 20180155060
    Abstract: One example aspect of the present disclosure is directed to a method for enhancing a maintenance operation routine. The method includes receiving, at one or more processors, engine history data. The method includes comparing, at the one or more processors, the received engine history data to expected engine history data. The method includes determining, at the one or more processors, an expected effectiveness of a plurality of maintenance operation types based on the comparison. The method includes selecting, at the one or more processors, one of the plurality of maintenance operation types based on the determinations. The method includes transmitting, at the one or more processors, a signal indicative of a notification of the selected maintenance operation type.
    Type: Application
    Filed: October 31, 2017
    Publication date: June 7, 2018
    Inventors: David Geoffrey Dauenhauer, Ronald Matthew DiMuro, Peter Andrew Flynn, Michael Edward Eriksen
  • Publication number: 20180010481
    Abstract: One example aspect of the present disclosure is directed to a method for measuring engine performance. The method includes receiving a plurality of parameters related to engine performance. The method includes receiving an indication of an engine wash event. The method includes determining an effectiveness of the engine wash event based on the plurality of parameters. The method includes performing a comparison of the effectiveness of the engine wash event with an expected effectiveness of the engine wash event. The method includes performing a control action based on the comparison.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 11, 2018
    Inventors: David Geoffrey Dauenhauer, Ronald Matthew DiMuro, Brian William Pfeiffer, Rob Anthony, Adam Joseph Schroeder, Will Munnerlyn
  • Publication number: 20180010982
    Abstract: One example aspect of the present disclosure is directed to a method for measuring engine performance. The method includes receiving first parameters related to engine performance prior to an engine wash event. The method includes receiving second parameters related to engine performance after the engine wash event. The method includes determining an engine performance prior to the engine wash event based on the first parameters. The method includes determining an engine performance after the engine wash event based on the second parameters. The method includes determining an effectiveness of the engine wash event based on the engine performance prior to the engine wash event and the engine performance after the engine wash event.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 11, 2018
    Inventors: David Geoffrey Dauenhauer, Ronald Matthew DiMuro, Brian William Pfeiffer, Rob Anthony, Adam Joseph Schroeder