Patents by Inventor David Gervais

David Gervais has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240152612
    Abstract: A cloud-based operating-system-event and data-access monitoring method includes collecting event information from a monitored cloud-based element. One or more structured event payloads based on the event information is then generated. The structured event payloads that produce one or more validated event collections are then validated. The one or more validated event collections are then serialized and filtered to remove redundant structured event payload data. The filtered validated structured event payloads are then de-serialized to produce a time-sequenced, ordered event stream. The time-sequenced, ordered event stream is de-duplicated to remove duplicate structured event payloads. The time-sequenced ordered event stream is then processed to generate processed information security results.
    Type: Application
    Filed: February 8, 2022
    Publication date: May 9, 2024
    Inventors: Christopher GERVAIS, Sean T. Reed, Nicholas S. Goodwin, Joseph D. Baker, Samuel Bisbee-vonKaufmann, Nathan D. Cooprider, David C. Hagman, Lucas M. Dubois, Jennifer A. Andre
  • Publication number: 20220331411
    Abstract: The invention provides conjugates comprising L-asparaginase and a water-soluble polymer for use in treating a disease treatable by L-asparagine depletion in a patient that has been previously administered E. coli derived L-asparaginase. The invention also provides methods of treatment, compositions comprising said conjugate, and methods of producing the conjugate.
    Type: Application
    Filed: August 21, 2020
    Publication date: October 20, 2022
    Inventor: David Gervais
  • Patent number: 9031236
    Abstract: Substantially identical numerical sequences known only to stations A and B are generated in a manner not subject to duplication by an eavesdropper and not subject to cryptanalytic attack because they are not derived using a mathematical function (such, as for example, factoring). The sequences are independently derived utilizing a physical phenomena that can only be “measured” precisely the same at stations A and B. Signals are simultaneously transmitted from each station toward the other through a communication channel having a characteristic physical property capable of modifying the signals in a non-deterministic way, such as causing a phase shift. Each signal is “reflected” by the opposite station back toward its station of origin. The effect of the communication channel is “measured” by comparing original and reflected signals. Measured differences are quantized and expressed as numbers.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 12, 2015
    Assignee: The MITRE Corporation
    Inventors: Nicholas C. Donnangelo, Marvin D. Drake, Christophe F. Bas, Joseph J. Rushanan, David Gervais
  • Publication number: 20120237031
    Abstract: Substantially identical numerical sequences known only to stations A and B are generated in a manner not subject to duplication by an eavesdropper and not subject to cryptanalytic attack because they are not derived using a mathematical function (such, as for example, factoring). The sequences are independently derived utilizing a physical phenomena that can only be “measured” precisely the same at stations A and B. Signals are simultaneously transmitted from each station toward the other through a communication channel having a characteristic physical property capable of modifying the signals in a non-deterministic way, such as causing a phase shift. Each signal is “reflected” by the opposite station back toward its station of origin. The effect of the communication channel is “measured” by comparing original and reflected signals. Measured differences are quantized and expressed as numbers.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Applicant: The MITRE Corporation
    Inventors: Nicholas C. DONNANGELO, Marvin D. DRAKE, Christophe F. BAS, Joseph J. RUSHANAN, David GERVAIS
  • Patent number: 8189785
    Abstract: Substantially identical numerical sequences known only to stations A and B are generated in a manner not subject to duplication by an eavesdropper and not subject to cryptanalytic attack because they are not derived using a mathematical function (such, as for example, factoring). The sequences are independently derived utilizing a physical phenomena that can only be “measured” precisely the same at stations A and B. Signals are simultaneously transmitted from each station toward the other through a communication channel having a characteristic physical property capable of modifying the signals in a non-deterministic way, such as causing a phase shift. Each signal is “reflected” by the opposite station back toward its station of origin. The effect of the communication channel is “measured” by comparing original and reflected signals. Measured differences are quantized and expressed as numbers.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 29, 2012
    Assignee: The MITRE Corporation
    Inventors: Nicholas C. Donnangelo, Marvin D. Drake, Christophe F. Bas, Joseph J. Rushanan, David Gervais
  • Publication number: 20100080386
    Abstract: Substantially identical numerical sequences known only to stations A and B are generated in a manner not subject to duplication by an eavesdropper and not subject to cryptanalytic attack because they are not derived using a mathematical function (such, as for example, factoring). The sequences are independently derived utilizing a physical phenomena that can only be “measured” precisely the same at stations A and B. Signals are simultaneously transmitted from each station toward the other through a communication channel having a characteristic physical property capable of modifying the signals in a non-deterministic way, such as causing a phase shift. Each signal is “reflected” by the opposite station back toward its station of origin. The effect of the communication channel is “measured” by comparing original and reflected signals. Measured differences are quantized and expressed as numbers.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: The MITRE Corporation
    Inventors: Nicholas C. Donnangelo, Marvin D. Drake, Christophe F. Bas, Joseph J. Rushanan, David Gervais
  • Publication number: 20070223938
    Abstract: In a fixed delay optical communication system, rate adjustable differential phase shift key (DPSK) techniques eliminate the need for multiple comparing modules, each corresponding to a different data rate. Setting alternative data rates at integer multiples of the fundamental data rate of the optical communication system allows the system to process the respective integer number of symbols per period of the system, wherein the period of the system is the inverse of the fundamental data rate. Pulse carving techniques may be used to set the duty cycle of clock levels associated with a clock signal. The clock levels may be combined with respective symbols to provide optical symbols having a duty cycle less than 100%.
    Type: Application
    Filed: March 24, 2006
    Publication date: September 27, 2007
    Inventors: David Gervais, Jeffrey Minch, Daniel Townsend