Patents by Inventor David Glen Findley

David Glen Findley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240149492
    Abstract: According to some embodiments, a system includes a three-dimensional (3D) printer, a hydraulic press, and a kiln. The three-dimensional printer includes a print bed, a first printhead, and a second printhead. The first printhead is configured to deposit a layer of a first powder on the print bed. The second printhead is configured to deposit a layer of a second powder on the print bed. The hydraulic press is configured to compress a greenware to form a compressed greenware. The kiln is configured to heat the compressed greenware to a reaction temperature to form an object. The object is surrounded by an excess of the first powder. The kiln is also configured to heat the object surrounded by the excess of the first powder to a melting temperature. The melting temperature is at least the melting point of the first powder and less than the melting point of the object.
    Type: Application
    Filed: December 19, 2023
    Publication date: May 9, 2024
    Applicant: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 11884549
    Abstract: In an embodiment, a method includes producing a mixed feedstock of at least three halogenated monomer feedstocks. A first of the at least three halogenated monomer feedstocks includes an SP3 carbon, a second of the at least three halogenated monomer feedstocks includes an SP2 carbon, and a third of the at least three halogenated monomer feedstocks includes at least two SP1 carbons. The method further includes producing a polyorbital-hybrid pre-ceramic polymer comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid pre-ceramic polymer is produced by reducing the mixed feedstock such that one or more halogen atoms are removed from the mixed feedstock. The method also includes fabricating the polyorbital-hybrid pre-ceramic polymer into a greenware form and producing a polyorbital-hybrid ceramic carbon comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid ceramic carbon is produced by thermolyzing the polyorbital pre-ceramic polymer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 30, 2024
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 11878442
    Abstract: According to some embodiments, a system includes a three-dimensional (3D) printer, a hydraulic press, and a kiln. The three-dimensional printer includes a print bed, a first printhead, and a second printhead. The first printhead is configured to deposit a layer of a first powder on the print bed. The second printhead is configured to deposit a layer of a second powder on the print bed. The hydraulic press is configured to compress a greenware to form a compressed greenware. The kiln is configured to heat the compressed greenware to a reaction temperature to form an object. The object is surrounded by an excess of the first powder. The kiln is also configured to heat the object surrounded by the excess of the first powder to a melting temperature. The melting temperature is at least the melting point of the first powder and less than the melting point of the object.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: January 23, 2024
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 11670507
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a feedstock, and a laser. The three-dimensional printer includes a platen including an inert metal, and an enclosure including an inert atmosphere. The feedstock is configured to be deposited onto the platen. The feedstock includes a halogenated solution and a nanoparticle having negative electron affinity. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, a ceramic and a diatomic halogen.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: June 6, 2023
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 11557475
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a neutral feedstock, a p-doped feedstock, an n-doped feedstock, and a laser. The 3D printer includes a platen and an enclosure. The platen includes an inert metal. The enclosure includes an inert atmosphere. The neutral feedstock is configured to be deposited onto the platen. The neutral feedstock includes a halogenated solution and a nanoparticle having a negative electron affinity. The p-doped feedstock is configured to be deposited onto the platen. The p-doped feedstock includes a boronated compound introduced to the neutral feedstock. The n-doped feedstock is configured to be deposited onto the platen. The n-doped feedstock includes a phosphorous compound introduced to the neutral feedstock. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, layers of a ceramic comprising a neutral layer, a p-doped layer, and an n-doped layer.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: January 17, 2023
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Publication number: 20210260863
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a neutral feedstock, a p-doped feedstock, an n-doped feedstock, and a laser. The 3D printer includes a platen and an enclosure. The platen includes an inert metal. The enclosure includes an inert atmosphere. The neutral feedstock is configured to be deposited onto the platen. The neutral feedstock includes a halogenated solution and a nanoparticle having a negative electron affinity. The p-doped feedstock is configured to be deposited onto the platen. The p-doped feedstock includes a boronated compound introduced to the neutral feedstock. The n-doped feedstock is configured to be deposited onto the platen. The n-doped feedstock includes a phosphorous compound introduced to the neutral feedstock. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, layers of a ceramic comprising a neutral layer, a p-doped layer, and an n-doped layer.
    Type: Application
    Filed: May 11, 2021
    Publication date: August 26, 2021
    Inventor: David Glen Findley
  • Publication number: 20210206020
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a feedstock, and a laser. The three-dimensional printer includes a platen including an inert metal, and an enclosure including an inert atmosphere. The feedstock is configured to be deposited onto the platen. The feedstock includes a halogenated solution and a nanoparticle having negative electron affinity. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, a ceramic and a diatomic halogen.
    Type: Application
    Filed: March 2, 2021
    Publication date: July 8, 2021
    Inventor: David Glen Findley
  • Patent number: 11052647
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a neutral feedstock, a p-doped feedstock, an n-doped feedstock, and a laser. The 3D printer includes a platen and an enclosure. The platen includes an inert metal. The enclosure includes an inert atmosphere. The neutral feedstock is configured to be deposited onto the platen. The neutral feedstock includes a halogenated solution and a nanoparticle having a negative electron affinity. The p-doped feedstock is configured to be deposited onto the platen. The p-doped feedstock includes a boronated compound introduced to the neutral feedstock. The n-doped feedstock is configured to be deposited onto the platen. The n-doped feedstock includes a phosphorous compound introduced to the neutral feedstock. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, layers of a ceramic comprising a neutral layer, a p-doped layer, and an n-doped layer.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: July 6, 2021
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Patent number: 10960571
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a feedstock, and a laser. The three-dimensional printer includes a platen including an inert metal, and an enclosure including an inert atmosphere. The feedstock is configured to be deposited onto the platen. The feedstock includes a halogenated solution and a nanoparticle having negative electron affinity. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, a ceramic and a diatomic halogen.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: March 30, 2021
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Publication number: 20200123014
    Abstract: In an embodiment, a method includes producing a mixed feedstock of at least three halogenated monomer feedstocks. A first of the at least three halogenated monomer feedstocks includes an SP3 carbon, a second of the at least three halogenated monomer feedstocks includes an SP2 carbon, and a third of the at least three halogenated monomer feedstocks includes at least two SP1 carbons. The method further includes producing a polyorbital-hybrid pre-ceramic polymer comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid pre-ceramic polymer is produced by reducing the mixed feedstock such that one or more halogen atoms are removed from the mixed feedstock. The method also includes fabricating the polyorbital-hybrid pre-ceramic polymer into a greenware form and producing a polyorbital-hybrid ceramic carbon comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid ceramic carbon is produced by thermolyzing the polyorbital pre-ceramic polymer.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventor: David Glen Findley
  • Publication number: 20200123015
    Abstract: In an embodiment, a method includes producing a mixed feedstock of at least three halogenated monomer feedstocks. A first of the at least three halogenated monomer feedstocks includes an SP3 carbon, a second of the at least three halogenated monomer feedstocks includes an SP2 carbon, and a third of the at least three halogenated monomer feedstocks includes at least two SP1 carbons. The method further includes producing a polyorbital-hybrid pre-ceramic polymer comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid pre-ceramic polymer is produced by reducing the mixed feedstock such that one or more halogen atoms are removed from the mixed feedstock. The method also includes fabricating the polyorbital-hybrid pre-ceramic polymer into a greenware form and producing a polyorbital-hybrid ceramic carbon comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid ceramic carbon is produced by thermolyzing the polyorbital pre-ceramic polymer.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventor: David Glen Findley
  • Patent number: 10577249
    Abstract: In an embodiment, a method includes producing a mixed feedstock of at least three halogenated monomer feedstocks. A first of the at least three halogenated monomer feedstocks includes an SP3 carbon, a second of the at least three halogenated monomer feedstocks includes an SP2 carbon, and a third of the at least three halogenated monomer feedstocks includes at least two SP1 carbons. The method further includes producing a polyorbital-hybrid pre-ceramic polymer comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid pre-ceramic polymer is produced by reducing the mixed feedstock such that one or more halogen atoms are removed from the mixed feedstock. The method also includes fabricating the polyorbital-hybrid pre-ceramic polymer into a greenware form and producing a polyorbital-hybrid ceramic carbon comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid ceramic carbon is produced by thermolyzing the polyorbital pre-ceramic polymer.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: March 3, 2020
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Publication number: 20190375007
    Abstract: According to some embodiments, a system includes a three-dimensional (3D) printer, a hydraulic press, and a kiln. The three-dimensional printer includes a print bed, a first printhead, and a second printhead. The first printhead is configured to deposit a layer of a first powder on the print bed. The second printhead is configured to deposit a layer of a second powder on the print bed. The hydraulic press is configured to compress a greenware to form a compressed greenware. The kiln is configured to heat the compressed greenware to a reaction temperature to form an object. The object is surrounded by an excess of the first powder. The kiln is also configured to heat the object surrounded by the excess of the first powder to a melting temperature. The melting temperature is at least the melting point of the first powder and less than the melting point of the object.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 12, 2019
    Inventor: David Glen Findley
  • Publication number: 20190346828
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a neutral feedstock, a p-doped feedstock, an n-doped feedstock, and a laser. The 3D printer includes a platen and an enclosure. The platen includes an inert metal. The enclosure includes an inert atmosphere. The neutral feedstock is configured to be deposited onto the platen. The neutral feedstock includes a halogenated solution and a nanoparticle having a negative electron affinity. The p-doped feedstock is configured to be deposited onto the platen. The p-doped feedstock includes a boronated compound introduced to the neutral feedstock. The n-doped feedstock is configured to be deposited onto the platen. The n-doped feedstock includes a phosphorous compound introduced to the neutral feedstock. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, layers of a ceramic comprising a neutral layer, a p-doped layer, and an n-doped layer.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 14, 2019
    Inventor: David Glen Findley
  • Publication number: 20190344470
    Abstract: In an embodiment, a system includes a three-dimensional (3D) printer, a feedstock, and a laser. The three-dimensional printer includes a platen including an inert metal, and an enclosure including an inert atmosphere. The feedstock is configured to be deposited onto the platen. The feedstock includes a halogenated solution and a nanoparticle having negative electron affinity. The laser is configured to induce the nanoparticle to emit solvated electrons into the halogenated solution to form, by reduction, a ceramic and a diatomic halogen.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 14, 2019
    Inventor: David Glen Findley
  • Patent number: 10186394
    Abstract: In an embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. The method includes forming a second diamond layer on top of the layer of graphene and applying a mask to the second diamond layer. The mask includes a shape of a cathode, an anode, and one or more grids. The method further includes forming a two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids includes a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: January 22, 2019
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley
  • Publication number: 20180327270
    Abstract: In an embodiment, a method includes producing a mixed feedstock of at least three halogenated monomer feedstocks. A first of the at least three halogenated monomer feedstocks includes an SP3 carbon, a second of the at least three halogenated monomer feedstocks includes an SP2 carbon, and a third of the at least three halogenated monomer feedstocks includes at least two SP1 carbons. The method further includes producing a polyorbital-hybrid pre-ceramic polymer comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid pre-ceramic polymer is produced by reducing the mixed feedstock such that one or more halogen atoms are removed from the mixed feedstock. The method also includes fabricating the polyorbital-hybrid pre-ceramic polymer into a greenware form and producing a polyorbital-hybrid ceramic carbon comprising the SP1 carbons, the SP2 carbon, and the SP3 carbon. The polyorbital-hybrid ceramic carbon is produced by thermolyzing the polyorbital pre-ceramic polymer.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 15, 2018
    Inventor: David Glen Findley
  • Publication number: 20180294131
    Abstract: In an embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. The method includes forming a second diamond layer on top of the layer of graphene and applying a mask to the second diamond layer. The mask includes a shape of a cathode, an anode, and one or more grids. The method further includes forming a two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids includes a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
    Type: Application
    Filed: October 11, 2017
    Publication date: October 11, 2018
    Inventor: David Glen Findley
  • Publication number: 20170323754
    Abstract: In an embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. The method includes forming a second diamond layer on top of the layer of graphene and applying a mask to the second diamond layer. The mask includes a shape of a cathode, an anode, and one or more grids. The method further includes forming a two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids includes a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
    Type: Application
    Filed: May 4, 2016
    Publication date: November 9, 2017
    Inventor: David Glen Findley
  • Patent number: 9805900
    Abstract: In an embodiment, a method includes forming a first diamond layer on a substrate and inducing a layer of graphene from the first diamond layer by heating the substrate and the first diamond layer. The method includes forming a second diamond layer on top of the layer of graphene and applying a mask to the second diamond layer. The mask includes a shape of a cathode, an anode, and one or more grids. The method further includes forming a two-dimensional cold cathode, a two-dimensional anode, and one or more two-dimensional grids by reactive-ion electron-beam etching. Each of the two-dimensional cold cathode, the two-dimensional anode, and the one or more two-dimensional grids includes a portion of the first diamond layer, the graphene layer, and the second diamond layer such that the graphene layer is positioned between the first diamond layer and the second diamond layer.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: October 31, 2017
    Assignee: Lockheed Martin Corporation
    Inventor: David Glen Findley