Patents by Inventor David Goldwasser

David Goldwasser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11078325
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 3, 2021
    Assignee: Presidium USA, Inc
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11072680
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 27, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11072679
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 27, 2021
    Assignee: Presidium USA, Inc
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11066511
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 20, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 11066512
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: July 20, 2021
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Publication number: 20190241699
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Application
    Filed: August 20, 2018
    Publication date: August 8, 2019
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Publication number: 20190055345
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 21, 2019
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Publication number: 20190055346
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 21, 2019
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Publication number: 20190040184
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 7, 2019
    Inventors: James Henry Blumson, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Publication number: 20180355097
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both of one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: James Henry Blumson, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 10053533
    Abstract: There is provided an oligomeric polyol composition having (a) an oligomeric network containing residues of at least one polyhydroxylated aromatic compound and residues of at least one polyol having at least three hydroxyl groups; and (b) a plurality of peripheral groups having one or more pendant hydroxyl groups bound to the oligomeric network by a plurality of linking units. The residues of the polyol may optionally contain one or more oxygen ether groups, one or more amino ether groups, or both one or more oxygen ether groups and one or more amino ether groups. Reaction of the oligomeric polyols with isocyanate monomers affords a new class of polyurethanes having superior heat and water resistance. The new polyurethanes exhibit lower peak exotherms, typically less than 250° F. during in-mold polymerization.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 21, 2018
    Assignee: Presidium USA, Inc.
    Inventors: James Henry Blumsom, Andrew John Tennant, James A. Cella, David Goldwasser, Daniel J. Brunelle, Stephen Burks, Richard Heggs
  • Patent number: 7851036
    Abstract: A shoe is fabricated from an upper structure and a sole structure wherein the sole structure contains a gas-filled cushioning device composed of a multi-layer film formed into a gas-filled membrane having an interior compartment enclosing at least one capture gas. The multi-layer film comprises an outer layer of an elastomeric thermoplastic material such as a polyurethane, an inner layer of an elastomeric thermoplastic material such as a polyurethane and a barrier layer interposed therebetween which is derived from a combination of at least one ethylene-vinyl alcohol copolymer and up to about 50 wt. % of an aliphatic thermoplastic urethane.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 14, 2010
    Assignee: BASF Coatings GmbH
    Inventors: Henry W Bonk, David Goldwasser
  • Patent number: 6797215
    Abstract: The present invention relates to membranes including an urethane including a polyester polyol, wherein the membrane has a gas transmission rate of 15.0 or less for nitrogen gas wherein the membrane has an average thickness of approximately 20.0 mils. Under certain embodiments, the membranes include blends of one or more polyester polyol based thermoplastic urethanes and one or more barrier materials. The membranes can be employed in a variety of applications and can be used as either monolayers or multi-layered laminates.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 28, 2004
    Assignee: Nike, Inc.
    Inventors: Henry W. Bonk, David Goldwasser
  • Publication number: 20040166268
    Abstract: A shoe is fabricated from an upper structure and a sole structure wherein the sole structure contains a gas-filled cushioning device composed of a multi-layer film formed into a gas-filled membrane having an interior compartment enclosing at least one capture gas. The multi-layer film comprises an outer layer of an elastomeric thermoplastic material such as a polyurethane, an inner layer of an elastomeric thermoplastic material such as a polyurethane and a barrier layer interposed therebetween which is derived from a combination of at least one ethylene-vinyl alcohol copolymer and up to about 50 wt. % of an aliphatic thermoplastic urethane.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 26, 2004
    Inventors: Henry W. Bonk, David Goldwasser
  • Patent number: 6730379
    Abstract: A shoe is fabricated from an upper structure and a sole structure wherein the sole structure contains a gas-filled cushioning device composed of a multi-layer film formed into a gas-filled membrane having an interior compartment enclosing at least one capture gas. The multi-layer film comprises an outer layer of an elastomeric thermoplastic material such as a polyurethane, an inner layer of an elastomeric thermoplastic material such as a polyurethane, and a barrier layer interposed therebetween which is derived from a combination of at least one ethylene-vinyl alcohol copolymer and up to about 50 wt. % of an aliphatic thermoplastic urethane.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: May 4, 2004
    Assignee: Nike, Inc.
    Inventors: Henry W. Bonk, David Goldwasser
  • Patent number: 6692803
    Abstract: The present invention relates to membranes including an urethane including a polyester polyol, wherein the membrane has a gas transmission rate of 15.0 or less for nitrogen gas wherein the membrane has an average thickness of approximately 20.0 mils. Under certain embodiments, the membranes include blends of one or more polyester polyol based thermoplastic urethanes and one or more barrier materials. The membranes can be employed in a variety of applications and can be used as either monolayers or multi-layered laminates.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: February 17, 2004
    Assignees: Nike, Inc., Tetra Plastics, Inc., Nike International Ltd.
    Inventors: Henry W. Bonk, David Goldwasser
  • Patent number: 6652940
    Abstract: The present invention relates to membranes including an urethane including a polyester polyol, wherein the membrane has a gas transmission rate of 15.0 or less for nitrogen gas wherein the membrane has an average thickness of approximately 20.0 mils. Under certain embodiments, the membranes include blends of one or more polyester polyol based thermoplastic urethanes and one or more barrier materials. The membranes can be employed in a variety of applications and can be used as either monolayers or multi-layered laminates.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: November 25, 2003
    Assignees: Nike, Inc., Tetra Plastics, Inc., Nike International Ltd.
    Inventors: Henry W. Bonk, David Goldwasser
  • Publication number: 20030148052
    Abstract: The present invention relates to membranes including a barrier layer which includes a blend of one or more aliphatic thermoplastic urethanes and one or more polar and partially crystalline materials. Under multi-layered embodiments, the barrier layer is laminated to at least one other layer formed from thermoplastic urethane, wherein the membranes are characterized in that hydrogen bonds are formed between the first layer of thermoplastic urethane and the second layer from the blend of aliphatic thermoplastic urethane and a copolymer of ethylene and vinyl alcohol.
    Type: Application
    Filed: February 28, 2003
    Publication date: August 7, 2003
    Inventors: Henry W. Bonk, David Goldwasser
  • Patent number: 6599597
    Abstract: The present invention relates to membranes including a barrier layer which includes a blend of one or more aliphatic thermoplastic urethanes and one or more polar and partially crystalline materials. Under multi-layered embodiments, the barrier layer is laminated to at least one other layer formed from thermoplastic urethane, wherein the membranes are characterized in that hydrogen bonds are formed between the first layer of thermoplastic urethane and the second layer from the blend of aliphatic thermoplastic urethane and a copolymer of ethylene and vinyl alcohol.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: July 29, 2003
    Assignee: Nike, Inc.
    Inventors: Henry W. Bonk, David Goldwasser
  • Publication number: 20020048643
    Abstract: The present invention relates to membranes including an urethane including a polyester polyol, wherein the membrane has a gas transmission rate of 15.0 or less for nitrogen gas wherein the membrane has an average thickness of approximately 20.0 mils. Under certain embodiments, the membranes include blends of one or more polyester polyol based thermoplastic urethanes and one or more barrier materials. The membranes can be employed in a variety of applications and can be used as either monolayers or multi-layered laminates.
    Type: Application
    Filed: September 27, 2001
    Publication date: April 25, 2002
    Inventors: Henry W. Bonk, David Goldwasser