Patents by Inventor David Gordon Bermudes

David Gordon Bermudes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827890
    Abstract: The present invention uses co-expression of protease inhibitors and protease sensitive therapeutic agents including phage and phagemids delivering peptides, therapeutic antibodies, DNA and RNA-based therapeutics that results in treating inflammation of a variety of disorders including psoriasis, atopic dermatitis and inflammatory bowel disease. The invention also provides bacteria that inhibit the growth of intestinal parasites such as worms, and deliver siRNA or miRNA that have specific anti-parasitic effects that results in the reduction or elimination of the parasite.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 28, 2023
    Inventor: David Gordon Bermudes
  • Patent number: 11813295
    Abstract: Bacterial strains are provided having at least one of a reduced size, a sialic acid coat, inducibly altered surface antigens, and expression of PD-L1 or CTLA-4 antagonists and/or tryptophanase. The bacteria may have improved serum half-life, increased penetration into tumors, increased tumor targeting and increased antitumor activity. The bacteria are useful for delivery of therapeutic agents that treat of neoplastic diseases including solid tumors and lymphomas.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 14, 2023
    Assignee: Theobald Therapeutics LLC
    Inventor: David Gordon Bermudes
  • Patent number: 11633435
    Abstract: Bacterial strains are provided having at least one of a reduced size, a sialic acid coat, inducibly altered surface antigens, and expression of PD-L1 or CTLA-4 antagonists and/or tryptophanase. The bacteria may have improved serum half-life, increased penetration into tumors, increased tumor targeting and increased antitumor activity. The bacteria are useful for delivery of therapeutic agents that treat of neoplastic diseases including solid tumors and lymphomas.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 25, 2023
    Inventor: David Gordon Bermudes
  • Patent number: 11485773
    Abstract: A genetically engineered live bacterium which is adapted to selectively replicate in and colonize a selected tissue type within the mammal, and concurrently produce within the selected tissue type at least one protease-sensitive cytotoxic molecule which is degradable by proteases within the selected tissue type, and at least one protease inhibitor peptide to inhibit the proteases within the selected tissue type from proteolytically degrading the protease sensitive cytotoxic molecule. The combination results in higher concentrations of the cytotoxic molecule local to the colonization, while permitting protease degradation of the cytotoxic molecule further away from the colonization.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: November 1, 2022
    Inventor: David Gordon Bermudes
  • Patent number: 11471497
    Abstract: Bacterial strains are provided having at least one enhanced mechanism to sequester, bind, precipitate, chemically oxidize or reduce copper ions or other toxic divalent transition metals. The bacteria may also have optional copper resistance mechanisms. The bacteria reduce the amount of available copper to tissues, which may be cancerous tissues, and reduce tumor growth, angiogenesis and/or metastasis, or tissues subject to excess copper due to host defects in copper metabolism. The bacteria are useful for treatment of neoplastic diseases including solid tumors and lymphomas, as well as Wilson's Disease, Menke's Disease, and possible Alzheimer's Disease, Parkinson's Disease, and Creutzfeldt-Jakob Disease.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: October 18, 2022
    Inventor: David Gordon Bermudes
  • Patent number: 11406702
    Abstract: A live genetically engineered bacterium, comprising a genetically engineered construct comprising a nucleic acid sequence encoding at least one portion of a SARS-CoV-2 antigen, the live genetically engineered bacterium being adapted for administration to a human or animal and colonization of at least one tissue under non-lethal conditions. The antigen is preferably the SARS-CoV-2 spike protein. The nucleic acid sequence preferably includes an associated promoter.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: August 9, 2022
    Inventor: David Gordon Bermudes
  • Patent number: 11219671
    Abstract: Bacteria which co-express protease inhibitors and protease sensitive therapeutic agents, which are surface displayed, secreted and/or released and result in their localized production and maintenance within a target tissue and inactivation outside of the target tissue, thereby increasing therapeutic activity and reducing the systemic toxicity. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. Protease sensitivity may be further accomplished by engineering protease degradation sites within the therapeutic agents, further enhancing the inactivation outside of the target tissue while retaining activity within the target tissue through co-expression of a protease inhibitor. Novel chimeric proteins secreted by bacteria, including chimeric toxins targeted to neoplastic cells, tumor matrix cells and cells of the immune system, and combination therapies of these protease inhibitor:chimeric toxin-expressing bacteria together with small-molecule and biologic agents are also described.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 11, 2022
    Inventor: David Gordon Bermudes
  • Patent number: 11180535
    Abstract: Bacteria with tumor-targeting capability express, surface displayed, secreted and/or released modified chimeric therapeutic proteins with enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias. The bacteria may also express, surface display, secrete and/or release a tumor-penetrating peptide. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. The chimeric proteins may be protease sensitive and may optionally be further accompanied by co-expression of a secreted protease inhibitor as a separate molecule or as a fusion.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: November 23, 2021
    Inventor: David Gordon Bermudes
  • Patent number: 11129906
    Abstract: Bacteria with tumor-targeting capability express, surface displayed, secreted and/or released modified chimeric therapeutic proteins with enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. The chimeric proteins may be protease sensitive and may optionally be further accompanied by co-expression of a secreted protease inhibitor as a separate molecule or as a fusion.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 28, 2021
    Inventor: David Gordon Bermudes
  • Patent number: 10973908
    Abstract: A live genetically engineered bacterium, comprising a genetically engineered construct comprising a nucleic acid sequence encoding at least one portion of a SARS-CoV-2 antigen, the live genetically engineered bacterium being adapted for administration to a human or animal and colonization of at least one tissue under non-lethal conditions. The antigen is preferably the SARS-CoV-2 spike protein. The nucleic acid sequence preferably includes an associated promoter.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: April 13, 2021
    Inventor: David Gordon Bermudes
  • Patent number: 10954521
    Abstract: Chimeric proteins are expressed, secreted or released by a bacterium to immunize against or treat a parasite, infectious disease or malignancy. The delivery vector may also be attenuated, non-pathogenic, low pathogenic, or a probiotic bacterium. The chimeric proteins include chimeras of, e.g., phage coat and/or colicin proteins, bacterial toxins and/or enzymes, autotransporter peptides, lytic peptides, multimerization domains, and/or membrane transducing (ferry) peptides. The active portion of the immunogenic chimeric proteins can include antigens against a wide range of parasites and infectious agents, cancers, Alzheimer's and Huntington's diseases, and have enhanced activity when secreted or released by the bacteria, and/or have direct anti-parasite or infectious agent activity. The activity of the secreted proteins is further increased by co-expression of a protease inhibitor that prevents degradation of the effector peptides.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: March 23, 2021
    Inventor: David Gordon Bermudes
  • Patent number: 10857233
    Abstract: Protease inhibitors together with protease sensitive therapeutics or diagnostics are provided, which may be ionically or covalently bound, or unbound. The protease inhibitors and/or protease sensitive moiety may be provided in monomeric, homopolymeric, heteropolymeric (for each of the protease and agent) and/or block copolymeric (combining polymers of agent and inhibitor) form. The inhibitors may be native active or e.g., protease activated. Multiple protease inhibitor peptides may be used in-frame with multiple protease cleavage signals (polymeric protease activated protease inhibitors). Combination with the protease inhibitors with the protease sensitive therapeutic enhances the intact, active molecule local-regional or targeted cell or tissue concentration, peak concentration and/or duration of the therapeutic exposure, thereby increasing its therapeutic efficacy. The protease inhibitors are particularly useful for tumor-targeted therapies and for vaccines.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 8, 2020
    Inventor: David Gordon Bermudes
  • Patent number: 10828356
    Abstract: Bacterial strains are provided having at least one of a reduced size, a sialic acid coat, inducibly altered surface antigens, and expression of PD-L1 or CTLA-4 antagonists and/or tryptophanase. The bacteria may have improved serum half-life, increased penetration into tumors, increased tumor targeting and increased antitumor activity. The bacteria are useful for delivery of therapeutic agents that treat of neoplastic diseases including solid tumors and lymphomas.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: November 10, 2020
    Inventor: David Gordon Bermudes
  • Patent number: 10828350
    Abstract: The present invention provides purified protease inhibitors derived from microorganisms alone or in combination with bacteriocins and/or antibodies. The protease inhibitors may also be expressed by microbiome or probiotic microorganisms alone or in combination with bacteriocins and/or antibodies. The invention also provides methods and compositions for improving the expression of endogenous or heterologous protease inhibitors alone or in combination with bacteriocins and/or antibodies. The invention is useful for treating a variety of inflammatory disorders including acne, psoriasis, eczema, atopic dermatitis and inflammatory bowel disease.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 10, 2020
    Inventor: David Gordon Bermudes
  • Patent number: 10729731
    Abstract: Bacterial strains are provided having at least one of a reduced size, a sialic acid coat, inducibly altered surface antigens, and expression of PD-L1 or CTLA-4 antagonists and/or tryptophanase. The bacteria may have improved serum half-life, increased penetration into tumors, increased tumor targeting and increased antitumor activity. The bacteria are useful for delivery of therapeutic agents that treat of neoplastic diseases including solid tumors and lymphomas.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 4, 2020
    Inventor: David Gordon Bermudes
  • Patent number: 10676723
    Abstract: Bacteria with tumor-targeting capability express, surface displayed, secreted and/or released modified chimeric therapeutic proteins with enhanced therapeutic activity against a neoplastic tissue including solid tumors, lymphomas and leukemias. The bacteria may be attenuated, non-pathogenic, low pathogenic or a probiotic. The chimeric proteins may be protease sensitive and may optionally be further accompanied by co-expression of a secreted protease inhibitor as a separate molecule or as a fusion.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: June 9, 2020
    Inventors: David Gordon Bermudes, David Quintero
  • Patent number: 10626403
    Abstract: A live bacterium, having a DNA construct stabilized against transduction of other bacteria, having a promoter sequence and encoding a fusion peptide, comprising a bacterial secretion peptide portion and a non-bacterial immunogenic polypeptide portion, having a nucleotide sequence coding for the non-bacterial immunogenic polypeptide portion which has at least one codon optimized for bacterial expression. The bacterium has a secretion mechanism which interacts with at least the bacterial secretion peptide portion to cause a secretion of the fusion peptide from the bacterium, and a genetic virulence attenuating mutation. The bacterium is adapted to act as an animal vaccine, to transiently infect a tissue of the animal, and cause an immunity response to the non-bacterial immunogenic polypeptide portion in the animal to a non-bacterial organism associated with the non-bacterial immunogenic polypeptide portion.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 21, 2020
    Assignee: Aviex Textnologies LLC
    Inventor: David Gordon Bermudes
  • Patent number: 10590185
    Abstract: A genetically engineered live bacterium which is adapted to selectively replicate in and colonize a selected tissue type within the mammal, and concurrently produce within the selected tissue type at least one protease-sensitive cytotoxic molecule which is degradable by proteases within the selected tissue type, and at least one protease inhibitor peptide to inhibit the proteases within the selected tissue type from proteolytically degrading the protease sensitive cytotoxic molecule. The combination results in higher concentrations of the cytotoxic molecule local to the colonization, while permitting protease degradation of the cytotoxic molecule further away from the colonization.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: March 17, 2020
    Inventor: David Gordon Bermudes
  • Publication number: 20200023053
    Abstract: Gram-negative bacterial mutants resistant to one or more stress conditions, including CO2, acid pH, and high osmolarity, and more particularly to gram-negative bacterial mutants with reduced TNF-? induction having a mutation in one or more lipid biosynthesis genes, including, but not limited to msbB, that are rendered stress-resistant by a mutation in the zwf gene. Compositions are provided comprising one or more stress-resistant gram-negative bacterial mutants, preferably attenuated stress-resistant gram-negative bacterial mutants. Methods are provided for prophylaxis or treatment of a virally induced disease in a subject comprising administering to a subject a stress-resistant gram-negative bacterial mutant, preferably attenuated stress-resistant gram-negative bacterial mutants. The stress-resistant gram-negative bacterial mutants may serve as vectors for the delivery of one or more therapeutic molecules to a host.
    Type: Application
    Filed: January 24, 2019
    Publication date: January 23, 2020
    Applicant: Aviex Technologies LLC
    Inventor: David Gordon Bermudes
  • Patent number: 10501746
    Abstract: The present invention uses co-expression of protease inhibitors and protease sensitive therapeutic agents including phage and phagemids delivering peptides, therapeutic antibodies, DNA and RNA-based therapeutics that results in treating inflammation of a variety of disorders including psoriasis, atopic dermatitis and inflammatory bowel disease. The invention also provides bacteria that inhibit the growth of intestinal parasites such as worms, and deliver siRNA or miRNA that have specific anti-parasitic effects that results in the reduction or elimination of the parasite.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: December 10, 2019
    Inventor: David Gordon Bermudes