Patents by Inventor David Grundy

David Grundy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240182390
    Abstract: A method for preparing a partially fluorinated alcohol. comprises reacting an epoxide: wherrein R1, R2, R3 and R4 are independently selected from the group comprising H, F, Cl, Br, I, CF3, alkyl, fluoroalkyl, haloalkyl with a fluorinating agent.
    Type: Application
    Filed: December 12, 2023
    Publication date: June 6, 2024
    Inventors: Andrew Sharratt, David Grundy, Ira Saxena
  • Patent number: 11897832
    Abstract: A method for preparing a partially fluorinated alcohol, comprises reacting an epoxide: wherein R1, R2, R3 and R4 are independently selected from the group comprising H, F, Cl, Br, I, CF3, alkyl, fluoroalkyl, haloalkyl with a fluorinating agent.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: February 13, 2024
    Assignee: MEXICHEM FLUOR S.A. DE C.V.
    Inventors: Andrew Sharratt, David Grundy, Ira Saxena
  • Publication number: 20220153668
    Abstract: A method for preparing a partially fluorinated alcohol, comprises reacting an epoxide: wherein R1, R2, R3 and R4 are independently selected from the group comprising H, F, Cl, Br, I, CF3, alkyl, fluoroalkyl, haloalkyl with a fluorinating agent.
    Type: Application
    Filed: March 18, 2020
    Publication date: May 19, 2022
    Inventors: Andrew Sharratt, David Grundy, Ira Saxena
  • Publication number: 20090048194
    Abstract: A method of identifying a compound capable of reducing or preventing prolonged sensory neuron hyper-excitability comprising the steps of: (a) administering the compound to an experimental non-human animal having prolonged sensory neuron hyper-excitability; (b) generating an expression profile of the genes modulated in the Nodose Ganglia (NG) of the animal of step (a); (c) comparing the expression profile obtained in (b) with the expression profile of a corresponding panel of genes expressed in the NG of an experimental non-human animal having no prolonged sensory neuron hyper-excitability; wherein a positive correlation of the expression profiles is indicative that the compound is capable of reducing or preventing prolonged sensory neuron hyper-excitability in NG.
    Type: Application
    Filed: February 8, 2006
    Publication date: February 19, 2009
    Applicant: Janssen Pharmaceutica N.V.
    Inventors: Jeroen Marcel Maria Roger Aerssens, Pieter Johau Peeters, Ann Louise Gabrielle Meulemans, Bernard Coulie, Kirk Hillsley, David Grundy, Ronald Stead
  • Publication number: 20070245834
    Abstract: Magnetic or electric field sensors are mounted against a material surface and used for stress, strain, and load monitoring of rotating components such as vehicle drive trains. The stationary sensors are mounted at multiple locations around the component and used assess the stress on the component at multiple rotational positions. The sensor response is typically converted into a material property, such as magnetic permeability or electrical conductivity, which accounts for any coating thickness that may be present between the sensor and mounting surface. The sensors are not in direct contact with the rotating component and are typically mounted on an annular material or ring that encircles the rotating component. Measurements of the annular material properties, such as the stress, are related to the stress on the rotating component and discrete features on the component.
    Type: Application
    Filed: February 5, 2007
    Publication date: October 25, 2007
    Inventors: Neil Goldfine, Darrell Schlicker, David Grundy, Yonko Sheiretov, Leandro Lorilla, Vladimir Zilberstein, Volker Weiss, J. Lovett, Andrew Washabaugh
  • Publication number: 20070227255
    Abstract: Observability of damage precursor, damage and usage states, or event occurrence may be enhanced by modifying component materials to include self-monitoring materials or by processing test material to alter the surface properties. The properties of the self monitoring materials, such as magnetic permeability or electrical conductivity, are monitored with electromagnetic sensors and provide greater property variations with component condition than the original component material. Processing includes shot peening or laser welding.
    Type: Application
    Filed: January 25, 2007
    Publication date: October 4, 2007
    Inventors: Neil Goldfine, Vladimir Zilberstein, David Grundy, Andrew Washabaugh, Darrell Schlicker, Ian Shay, Robert Lyons, Christopher Craven, Christopher Root, Mark Windoloski, Volker Weiss
  • Publication number: 20070114993
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 24, 2007
    Inventors: Neil Goldfine, Ian Shay, Darrell Schlicker, Andrew Washabaugh, David Grundy, Robert Lyons, Vladimir Zilberstein, Vladimir Tsukernik
  • Publication number: 20070069720
    Abstract: Nondestructive material condition monitoring and assessment is accomplished by placing, mounting, or scanning magnetic and electric field sensors and sensor arrays over material surfaces. The material condition can be inferred directly from material property estimates, such as the magnetic permeability, dielectric permittivity, electrical property, or thickness, or from a correlation with these properties. Hidden cracks in multiple layer structures in the presence of fasteners are detected by combining multiple frequency magnetic field measurements and comparing the result to characteristic signature responses. The threshold value for indicating a crack is adjusted based on a high frequency measurement that accounts for fastener type. The condition of engine disk slot is determined without removal of the disk from the engine by placing near the disk a fixture that contains a sensor for scanning through the slot and means for recording position within the slot.
    Type: Application
    Filed: September 19, 2005
    Publication date: March 29, 2007
    Inventors: Neil Goldfine, Mark Windoloski, David Grundy, Yanko Sheiretov, Darrell Schlicker, Andrew Washabaugh
  • Publication number: 20070029997
    Abstract: Magnetic field based eddy-current sensing arrays measure the near surface properties conducting and magnetic materials. The arrays have a drive winding for imposing the magnetic field in a test material and at least two sense elements for sensing the response of the test material to the magnetic field. Each sense element has distinct leads for connection to impedance measurement instrumentation. The arrays have accurately positioned sense elements and drive winding conductors so that the sense element responses are essentially identical for test materials having uniform properties. The drive windings are typically formed into circular loops for examining material properties in the vicinity of circular features in the test material, such as holes or fasteners. For examining the material, the sensor arrays are rotated around the feature or mounted against a material surface and provide information from multiple locations around the feature to determine if cracks are present or to monitor crack growth.
    Type: Application
    Filed: May 1, 2006
    Publication date: February 8, 2007
    Inventors: Neil Goldfine, Darrell Schlicker, Karen Walrath, Andrew Washabaugh, David Grundy
  • Publication number: 20070007955
    Abstract: Damage and usage conditions in the vicinity of fasteners in joined structures are nondestructively evaluated using the fasteners themselves. Sensors or sensor conductors are embedded in the fasteners or integrated within the fastener construct, either in the clearance gap between the fastener and the structure material or as an insert inside the shaft or pin of the fastener. The response of the material to an interrogating magnetic or electric field is then measured with drive and sense electrodes both incorporated into the fastener or with either drive or sense electrodes external to the fastener on the material surface. In another configuration, an electric current is applied to one or more fasteners and the electric potential is measured at locations typically between the driven electrodes applying the current. The potential is measured circumferentially around the fastener at locations on the material surface or across pairs of fasteners throughout or along the joint.
    Type: Application
    Filed: June 22, 2006
    Publication date: January 11, 2007
    Inventors: Neil Goldfine, David Grundy, Andrew Washabaugh, Yanko Sheiretov, Darrell Schlicker
  • Publication number: 20060247896
    Abstract: The condition of insulating and semiconducting dielectric materials is assessed by a sensor array that uses electric fields to interrogate the test material. The sensor has a linear array of parallel drive conductors interconnected to form a single drive electrode and sense conductors placed on each side of and parallel to a drive conductor. Subsets of the sense conductors are interconnected to form at least two sense elements sensitive to different material regions. The sense conductors may be at different distances to the drive conductors, enabling measurement sensitivity to different depths into the test material. The material condition is assessed directly from the sense element responses or after conversion to an effective material property, such as an electrical conductivity or dielectric permittivity.
    Type: Application
    Filed: March 7, 2006
    Publication date: November 2, 2006
    Inventors: Neil Goldfine, Darrell Schlicker, Yanko Sheiretov, Andrew Washabaugh, David Grundy, Vladimir Zilberstein
  • Publication number: 20060244443
    Abstract: Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges.
    Type: Application
    Filed: January 30, 2006
    Publication date: November 2, 2006
    Inventors: Neil Goldfine, Andrew Washabaugh, Yanko Sheiretov, Darrell Schlicker, Robert Lyons, Mark Windoloski, Christopher Craven, Vladimir Tsukernik, David Grundy
  • Publication number: 20060186880
    Abstract: An automated drawing tool and a method for drawing a sensor layout. A sensor is drawn by selecting a sensor family, each sensor of the sensor family having at least one drive element to impose a magnetic field in a test material when driven by an electric signal, and at least one sense element for sensing a response of the test material. A set of layout rules are associated with the sensor family and are used in determining a sensor-layout. The automated drawing tool processes input information and the layout rules, for the sensor family, to automatically draw the sensor.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 24, 2006
    Inventors: Darrell Schlicker, Neil Goldfine, Andrew Washabaugh, Karen Walrath, Ian Shay, David Grundy, Mark Windoloski
  • Publication number: 20060076952
    Abstract: Apparatus and methods are described for assessing material condition through magnetic field measurements that provide material property information at multiple depths into the material. The measurements are obtained from sense elements located at different distances from an excitation drive winding, with the area of each sense element adjusted so that the flux of magnetic field through each sense element is approximately the same when over a reference material. These sense element responses can be combined, for example by subtraction, to enhance sensitivity to hidden features, such as cracks beneath fastener heads, while reducing the influence from variable effects, such as fastener material type and placement. Measurement responses can also be converted into effective material properties, using a model that accounts for known properties of the sensor and test material, which are then correlated with the size of the surface breaking or hidden features.
    Type: Application
    Filed: February 11, 2005
    Publication date: April 13, 2006
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, David Grundy, Mark Windoloski, Ian Shay, Andrew Washabaugh
  • Publication number: 20060009865
    Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.
    Type: Application
    Filed: March 14, 2005
    Publication date: January 12, 2006
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, Ian Shay, Christopher Craven, David Grundy, Volker Weiss, Andrew Washabaugh
  • Publication number: 20050248339
    Abstract: Inductive sensors measure the near surface properties of conducting and magnetic material. A sensor may have primary windings with parallel extended winding segments to impose a spatially periodic magnetic field in a test material. Those extended portions may be formed by adjacent portions of individual drive coils. Sensing elements provided every other half wavelength may be connected together in series while the sensing elements in adjacent half wavelengths are spatially offset. Certain sensors include circular segments which create a circularly symmetric magnetic field that is periodic in the radial direction. Such sensors are particularly adapted to surround fasteners to detect cracks and can be mounted beneath a fastener head. In another sensor, sensing windings are offset along the length of parallel winding segments to provide material measurements over different locations when the circuit is scanned over the test material.
    Type: Application
    Filed: February 11, 2005
    Publication date: November 10, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, David Grundy, Mark Windoloski, Ian Shay, Andrew Washabaugh
  • Publication number: 20050171703
    Abstract: Methods are described for assessing material condition. These methods include the use of multiple source fields for interrogating and loading of a multicomponent test material. Source fields include electric, magnetic, thermal, and acoustic fields. The loading field preferentially changes the material properties of a component of the test material, which allows the properties of the component materials to be separated. Methods are also described for monitoring changes in material state using separate drive and sense electrodes with some of the electrodes positioned on a hidden or even embedded material surface. Statistical characterization of the material condition is performed with sensor arrays that provide multiple responses for the material condition during loading. The responses can be combined into a statistical population that permits tracking with respect to loading history.
    Type: Application
    Filed: January 14, 2005
    Publication date: August 4, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, Vladimir Zilberstein, Andrew Washabaugh, Volker Weiss, Christopher Craven, Ian Shay, David Grundy, Karen Walrath, Robert Lyons
  • Publication number: 20050146324
    Abstract: Fabrication of samples having material conditions or damage representative of actual components inspected by nondestructive testing involves sensors placed near or mounted on the material surface, such as flexible eddy current sensors or sensor arrays, to monitor the material condition while the sample is being processed. These sample typically have real cracks in or around holes, on curved surfaces, in and under coatings, and on shot peened or otherwise preconditioned surfaces. Processing, such as mechanical or thermal loading to introduce fatigue damage, is stopped once the material condition reaches a predetermined level.
    Type: Application
    Filed: November 15, 2004
    Publication date: July 7, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, David Grundy, Volker Weiss, Andrew Washabaugh
  • Publication number: 20050127908
    Abstract: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.
    Type: Application
    Filed: October 12, 2004
    Publication date: June 16, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Darrell Schlicker, Neil Goldfine, David Grundy, Robert Lyons, Vladimir Zilberstein, Andrew Washabaugh, Vladimir Tsukernik, Mark Windoloski, Ian Shay
  • Publication number: 20050088172
    Abstract: Quasistatic sensor responses may be converted into multiple model parameters to characterize hidden properties of a material. Methods of conversion use databases of responses and, in some cases, databases that include derivatives of the responses, to estimate at least three unknown model parameters, such as the electrical conductivity, magnetic permeability, dielectric permittivity, thermal conductivity, and/or layer thickness. These parameter responses are then used to obtain a quantitative estimate of a property of a hidden feature, such as corrosion loss layer thicknesses, inclusion size and depth, or stress variation. The sensors can be single element sensors or sensor arrays and impose an interrogation electric, magnetic, or thermal field.
    Type: Application
    Filed: September 3, 2004
    Publication date: April 28, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, Darrell Schlicker, David Grundy, Ian Shay, Robert Lyons, Andrew Washabaugh