Patents by Inventor David H. Deaton
David H. Deaton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11478614Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: GrantFiled: February 3, 2022Date of Patent: October 25, 2022Assignee: LimFlow GmbHInventors: David H. Deaton, Sophie Humbert, Rowan Olund Hettel, Trent Matthew Mengel
-
Publication number: 20220152358Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: ApplicationFiled: February 3, 2022Publication date: May 19, 2022Inventors: David H. Deaton, Sophie Humbert, Rowan Olund Hettel, Trent Matthew Mengel
-
Patent number: 11311700Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: GrantFiled: June 29, 2021Date of Patent: April 26, 2022Assignee: LimFlow GmbHInventors: David H. Deaton, Sophie Humbert, Rowan Olund Hettel, Trent Matthew Mengel
-
Publication number: 20210322728Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: ApplicationFiled: June 29, 2021Publication date: October 21, 2021Inventors: David H. Deaton, Trent Matthew Mengel
-
Patent number: 11116943Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: GrantFiled: April 8, 2021Date of Patent: September 14, 2021Assignee: LimFlow GmbHInventors: David H. Deaton, Trent Matthew Mengel
-
Publication number: 20210220616Abstract: A launching catheter for targeting a second vessel from a first vessel includes a catheter including a proximal portion and a distal portion including a needle aperture and a flat rectangular radiopaque marker. The flat rectangular radiopaque marker disappears under fluoroscopy upon rotation to provide information about rotational alignment of the launching catheter. The launching catheter includes a needle configured to extend through the needle aperture. A method of aligning the catheter includes rotating the catheter in a first blood vessel until the marker has a thickness (e.g., minimal thickness) under fluoroscopy. The thickness indicates rotational alignment of the catheter.Type: ApplicationFiled: April 8, 2021Publication date: July 22, 2021Inventors: David H. Deaton, Trent Matthew Mengel
-
Publication number: 20040106972Abstract: A two-layered fenestrated vascular graft is provided for repair of diseased, damaged or aneurismal blood vessels. The fenestrated vascular graft is configured to be delivered transluminally and implanted within the lumen of a native blood vessel using catheter-based minimally-invasive surgical techniques. The vascular graft is fenestrated or perforated to facilitate making a fluid connection or anastomosis with one or more of the sidebranches of the vessel into which it is implanted. The vascular graft is adapted for implantation into blood vessels, such as the aorta, having tributary vessels or sidebranches along the section of the blood vessel to be repaired without occluding or obscuring the sidebranches. Methods are described for implanting the vascular graft into a patient's aorta for repairing thoracic or abdominal aortic aneurysms and for making a fluid connection or anastomosis with the tributary vessels or sidebranches of the aorta, such as the renal, hepatic and mesenteric arteries.Type: ApplicationFiled: November 25, 2003Publication date: June 3, 2004Inventor: David H. Deaton
-
Patent number: 6652567Abstract: A two-layered fenestrated vascular graft is provided for repair of diseased, damaged or aneurismal blood vessels. The fenestrated vascular graft is configured to be delivered transluminally and implanted within the lumen of a native blood vessel using catheter-based minimally-invasive surgical techniques. The vascular graft is fenestrated or perforated to facilitate making a fluid connection or anastomosis with one or more of the sidebranches of the vessel into which it is implanted. The vascular graft is adapted for implantation into blood vessels, such as the aorta, having tributary vessels or sidebranches along the section of the blood vessel to be repaired without occluding or obscuring the sidebranches. Methods are described for implanting the vascular graft into a patient's aorta for repairing thoracic or abdominal aortic aneurysms and for making a fluid connection or anastomosis with the tributary vessels or sidebranches of the aorta, such as the renal, hepatic and mesenteric arteries.Type: GrantFiled: November 20, 2000Date of Patent: November 25, 2003Inventor: David H. Deaton
-
Patent number: 6565583Abstract: Improved apparatus and methods are described for performing endarterectomy remotely via intraluminal techniques. A flexible blade dissector has a curved, diamond-shaped flexible dissecting blade mounted on a catheter shaft. The distal edge of the flexible dissecting blade is configured to form a dissecting edge for separating an atheromatous plaque from the medial layer of an artery wall. The flexible blade dissector may incorporate a steering mechanism to direct the flexible dissecting blade along a preferred path within the arterial wall. The endarterectomy method is performed by making an incision into an artery wall and initiating a plane of separation between an atherosclerotic plaque and the medial layer of the artery wall, inserting the flexible blade dissector into the plane of separation and advancing the flexible dissecting blade to longitudinally extend the plane of separation.Type: GrantFiled: July 7, 2000Date of Patent: May 20, 2003Assignee: Acumen Vascular, Inc.Inventors: David H. Deaton, Steve G. Baker