Patents by Inventor David H. Hinds

David H. Hinds has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395271
    Abstract: Systems reduce noncondensable gasses within coolant systems with a recombiner into which the fluid coolant flows. Flow through the recombiner may be opposite that of a heat exchanger. The recombiner includes a catalyst that combines or degrades the noncondensable gasses, such as a Group 9-11 transition metal that speeds reaction of noncondensable gasses. The catalyst may be a liner, plate, aggregate, et. with openings through which all coolant must flow. The recombiner may be insulated to prevent heat exchange and condensation and may be tilted from a vertical to enhance draining and fluid flow. The entire system may be passive without any operator intervention or moving structures. Systems can be made from isolation condenser systems in nuclear power plants in an isolation condenser pool by adding a recombiner to existing coolant systems. Systems may also be made by including a recombiner with new isolation condensers.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Inventors: Necdet Kurul, Charles L. Heck, David H. Hinds
  • Patent number: 11763954
    Abstract: An integrated passive cooling containment structure for a nuclear reactor includes a concentric arrangement of an inner steel cylindrical shell and an outer steel cylindrical shell that define both a lateral boundary of a containment environment of the nuclear reactor that is configured to accommodate a nuclear reactor and an annular gap space between the inner and outer steel cylindrical shells, a concrete donut structure at a bottom of the annular gap space, and a plurality of concrete columns spaced apart azimuthally around a circumference of the annular gap and extending in parallel from a top surface of the concrete donut structure to a top of the annular gap space. The outer and inner steel cylindrical shells and the concrete donut structure at least partially define one or more coolant channels extending through the annular gap space.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: September 19, 2023
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds
  • Patent number: 11569000
    Abstract: A nuclear plant includes a nuclear reactor, a containment structure that at least partially defines a containment environment of the nuclear reactor, and a passive containment cooling system that causes coolant fluid to flow downwards from a coolant reservoir to a bottom of a coolant channel coupled to the containment structure and rise through the coolant channel toward the coolant reservoir due to absorbing heat from the nuclear reactor. A check valve assembly, in fluid communication with the coolant reservoir, selectively enables one-way flow of a containment fluid from the containment environment to the coolant reservoir, based on a pressure at an inlet being equal to or greater than a threshold magnitude. A fusible plug, in fluid communication with the coolant reservoir at a bottom vertical depth below the bottom of the coolant reservoir, enables coolant fluid to flow into the containment structure based on at least partially melting.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: January 31, 2023
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds
  • Publication number: 20220367076
    Abstract: A nuclear plant includes a nuclear reactor, a containment structure that at least partially defines a containment environment of the nuclear reactor, and a passive containment cooling system that causes coolant fluid to flow downwards from a coolant reservoir to a bottom of a coolant channel coupled to the containment structure and rise through the coolant channel toward the coolant reservoir due to absorbing heat from the nuclear reactor. A check valve assembly, in fluid communication with the coolant reservoir, selectively enables one-way flow of a containment fluid from the containment environment to the coolant reservoir, based on a pressure at an inlet being equal to or greater than a threshold magnitude. A fusible plug, in fluid communication with the coolant reservoir at a bottom vertical depth below the bottom of the coolant reservoir, enables coolant fluid to flow into the containment structure based on at least partially melting.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 17, 2022
    Applicant: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. HINDS
  • Publication number: 20220254527
    Abstract: An integrated passive cooling containment structure for a nuclear reactor includes a concentric arrangement of an inner steel cylindrical shell and an outer steel cylindrical shell that define both a lateral boundary of a containment environment of the nuclear reactor that is configured to accommodate a nuclear reactor and an annular gap space between the inner and outer steel cylindrical shells, a concrete donut structure at a bottom of the annular gap space, and a plurality of concrete columns spaced apart azimuthally around a circumference of the annular gap and extending in parallel from a top surface of the concrete donut structure to a top of the annular gap space. The outer and inner steel cylindrical shells and the concrete donut structure at least partially define one or more coolant channels extending through the annular gap space.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Applicant: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. HINDS
  • Patent number: 11373769
    Abstract: A nuclear plant includes a nuclear reactor, a containment structure that at least partially defines a containment environment of the nuclear reactor, and a passive containment cooling system that causes coolant fluid to flow downwards from a coolant reservoir to a bottom of a coolant channel coupled to the containment structure and rise through the coolant channel toward the coolant reservoir due to absorbing heat from the nuclear reactor. A check valve assembly, in fluid communication with the coolant reservoir, selectively enables one-way flow of a containment fluid from the containment environment to the coolant reservoir, based on a pressure at an inlet being equal to or greater than a threshold magnitude. A fusible plug, in fluid communication with the coolant reservoir at a bottom vertical depth below the bottom of the coolant reservoir, enables coolant fluid to flow into the containment structure based on at least partially melting.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: June 28, 2022
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds
  • Publication number: 20220199271
    Abstract: Piping loops can carry either forced or natural circulation coolant flow from and back to a reactor depending on reactor and coolant state, and can transition between the two. The loop flows into a heat exchanger that significantly cools the coolant and may even condense the coolant. The heat exchanger can drive natural circulation coolant flow, and a pump on the loop can drive forced circulation. Coolant direction may be reversed through the heat exchanger in different modes. Loops may be installed directly on existing ICSs, come off of a primary loop generating electricity commercially, or be their own loop around and penetrations to the reactor. Actuation valves may isolate and actuate the system merely by disallowing or allowing coolant flow. Different flow modes and coolant direction may be similarly achieved by pump actuation and/or valve opening/closing. Beyond the pump and simple valve actuation, loops may be entirely passive.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: David H. Hinds, Charles L. Heck
  • Patent number: 11342085
    Abstract: An integrated passive cooling containment structure for a nuclear reactor includes a concentric arrangement of an inner steel cylindrical shell and an outer steel cylindrical shell that define both a lateral boundary of a containment environment of the nuclear reactor that is configured to accommodate a nuclear reactor and an annular gap space between the inner and outer steel cylindrical shells, a concrete donut structure at a bottom of the annular gap space, and a plurality of concrete columns spaced apart azimuthally around a circumference of the annular gap and extending in parallel from a top surface of the concrete donut structure to a top of the annular gap space. The outer and inner steel cylindrical shells and the concrete donut structure at least partially define one or more coolant channels extending through the annular gap space.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: May 24, 2022
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds
  • Publication number: 20210193339
    Abstract: An integrated passive cooling containment structure for a nuclear reactor includes a concentric arrangement of an inner steel cylindrical shell and an outer steel cylindrical shell that define both a lateral boundary of a containment environment of the nuclear reactor that is configured to accommodate a nuclear reactor and an annular gap space between the inner and outer steel cylindrical shells, a concrete donut structure at a bottom of the annular gap space, and a plurality of concrete columns spaced apart azimuthally around a circumference of the annular gap and extending in parallel from a top surface of the concrete donut structure to a top of the annular gap space. The outer and inner steel cylindrical shells and the concrete donut structure at least partially define one or more coolant channels extending through the annular gap space.
    Type: Application
    Filed: December 24, 2019
    Publication date: June 24, 2021
    Applicant: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds
  • Publication number: 20210193338
    Abstract: A nuclear plant includes a nuclear reactor, a containment structure that at least partially defines a containment environment of the nuclear reactor, and a passive containment cooling system that causes coolant fluid to flow downwards from a coolant reservoir to a bottom of a coolant channel coupled to the containment structure and rise through the coolant channel toward the coolant reservoir due to absorbing heat from the nuclear reactor. A check valve assembly, in fluid communication with the coolant reservoir, selectively enables one-way flow of a containment fluid from the containment environment to the coolant reservoir, based on a pressure at an inlet being equal to or greater than a threshold magnitude. A fusible plug, in fluid communication with the coolant reservoir at a bottom vertical depth below the bottom of the coolant reservoir, enables coolant fluid to flow into the containment structure based on at least partially melting.
    Type: Application
    Filed: December 24, 2019
    Publication date: June 24, 2021
    Applicant: GE-Hitachi Nuclear Energy Americas LLC
    Inventor: David H. Hinds