Patents by Inventor DAVID H. MAI

DAVID H. MAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10589397
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Publication number: 20170151647
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 1, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Patent number: 9005999
    Abstract: Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.
    Type: Grant
    Filed: June 30, 2012
    Date of Patent: April 14, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Kun Xu, Jimin Zhang, David H. Mai, Stephen Jew, Shih-Haur Walters Shen, Zhihong Wang, Thomas H. Osterheld, Wen-Chiang Tu, Gary Ka Ho Lam, Tomohiko Kitajima
  • Publication number: 20140222188
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Patent number: 8694144
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 8, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Stephen Jew, David H. Mai, Huyen Tran, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang
  • Publication number: 20140030956
    Abstract: A polishing method includes positioning two substrates in contact with the same polishing pad. Prior to commencement of polishing and while the two substrates are in contact with the polishing pad, two starting values are generated from an in-situ monitoring system. Either a starting polishing time or a pressure applied to one of the substrates can be adjusted so that the two substrates have closer endpoint conditions. During polishing the two substrates are monitored with the in-situ monitoring system to generate a two sequences of values, and a polishing endpoint can be detected or an adjustment for a polishing parameter can be based on the two sequences of values.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Jimin Zhang, Jose Salas-Vernis, Ingemar Carlsson, David H. Mai, Huyen Tran, Zhihong Wang, Wen-Chiang Tu, Stephen Jew, Boguslaw A. Swedek, Shih-Haur Shen, James C. Wang, Yen-Chu Yang
  • Publication number: 20140024293
    Abstract: A polishing method includes simultaneously polishing a first substrate and a second substrate on the same polishing pad, storing a default overpolishing time, determining first and second polishing endpoint times of the first and substrates with the in-situ monitoring system, determining a difference between the first and second polishing endpoint times, and determining whether the difference exceeds a threshold. If the difference is less than the threshold, then an overpolishing stop time is calculated and polishing of the first substrate and the second substrates is halted simultaneously at the overpolishing stop time. If the difference is greater than the threshold, then first and second overpolishing stop times that equal the first and second endpoint times plus the default overpolishing time are calculated, and polishing of the first and second substrates is halted at the first and second overpolishing stop times, respectively.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Inventors: Jimin Zhang, Zhihong Wang, David H. Mai, Ingemar Carlsson, Stephen Jew, Boguslaw A. Swedek
  • Publication number: 20140004626
    Abstract: Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.
    Type: Application
    Filed: June 30, 2012
    Publication date: January 2, 2014
    Applicant: Applied Materials, Inc.
    Inventors: KUN XU, Jimin Zhang, David H. Mai, Stephen Jew, Shih-Haur Walters Shen, Zhihong Wang, Thomas H. Osterheld, Wen-Chiang Tu, Gary Ka Ho Lam, Tomohiko Kitajima
  • Publication number: 20120053717
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Alain Duboust, Stephen Jew, David H. Mai, Huyen Tran, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang
  • Publication number: 20110300776
    Abstract: An apparatus and method for simulating a substrate being polished in a multiple carrier head per platen station when no substrate is provided in one or more of the multiple carrier heads is described. In one embodiment, a method for processing a substrate includes providing a single substrate to a polishing station adapted to process a plurality of substrates on a single polishing pad using at least a first carrier head and a second carrier head, retaining the single substrate in the first carrier head while the second carrier head remains substrate-free, urging the first carrier head and the second carrier head toward a polishing surface of the polishing pad; and providing relative movement between the polishing pad and the first carrier head.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: David H. Mai, Stephen Jew, Xiaoyuan (Sandra) Hu
  • Publication number: 20090057264
    Abstract: Embodiments described herein generally provide a method for processing metals disposed on a substrate in a chemical mechanical polishing system. The apparatus advantageously facilitates efficient bulk and residual conductive material removal from a substrate. In one embodiment a method for chemical mechanical polishing (CMP) of a conductive material disposed on a substrate is provided. A substrate comprising a conductive material disposed over an underlying barrier material is positioned on a first platen containing a first polishing pad. The substrate is polished on a first platen to remove a bulk portion of the conductive material. A rate quench process is performed in order to reduce a metal ion concentration in the polishing slurry. The substrate is polished on the first platen to breakthrough the conductive material exposing a portion of the underlying barrier material.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Inventors: DAVID H. MAI, Stephen Jew, Shih-Haur Walters Shen, Zhihong Wang