Patents by Inventor David H. Mordaunt

David H. Mordaunt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9101448
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 11, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9095415
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye issue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 4, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150141968
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150038952
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150038951
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140379319
    Abstract: Various methods, techniques or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventors: David H. Mordaunt, G. Patrick Maxwell
  • Publication number: 20140347632
    Abstract: Single piece ophthalmic inspection devices are provided having a continuous 3-dimensional molded surface preferably made out of plastic. The devices are relatively easier and cheaper to manufacture than existing inspection lenses. The smooth continuous edges are advantages to prevent damage to tissue as well to stop foreign objects accumulating in e.g. the clear regions of the lens. Ergonomic features built into the ophthalmic inspection device provide for superior control of the device on the patient's eye. In addition, textured knurled or grooved surfaces provide desired finger grip and control of the device.
    Type: Application
    Filed: July 2, 2014
    Publication date: November 27, 2014
    Inventor: David H. MORDAUNT
  • Patent number: 8888717
    Abstract: Various methods, techniques or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: November 18, 2014
    Assignee: Allergan, Inc.
    Inventors: David H. Mordaunt, G. Patrick Maxwell, Thomas J. Liolios
  • Publication number: 20140316386
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye issue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: October 23, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8834391
    Abstract: Various methods, techniques or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: September 16, 2014
    Assignee: Allergan, Inc.
    Inventors: David H. Mordaunt, G. Patrick Maxwell
  • Publication number: 20140228827
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 14, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140228826
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 14, 2014
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8801185
    Abstract: Single piece ophthalmic inspection devices are provided having a continuous 3-dimensional molded surface preferably made out of plastic. The devices are relatively easier and cheaper to manufacture than existing inspection lenses. The smooth continuous edges are advantages to prevent damage to tissue as well to stop foreign objects accumulating in e.g. the clear regions of the lens. Ergonomic features are built into the ophthalmic inspection device provide for superior control of the device on the patient's eye. In addition, textured knurled or grooved surface provide desired finger grip and control of the device.
    Type: Grant
    Filed: March 25, 2012
    Date of Patent: August 12, 2014
    Assignee: EOS Holdings, LLC
    Inventor: David H Mordaunt
  • Patent number: 8795204
    Abstract: Various systems, methods, techniques and/or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 5, 2014
    Assignee: Allergan, Inc.
    Inventors: David H. Mordaunt, G. Patrick Maxwell
  • Publication number: 20140128686
    Abstract: An ophthalmic laser illuminator 10 includes multiple laser devices 12-16. There are at least three different wavelengths of light emitted by the multiple laser devices 12-16 and each wavelength of light emitted by each laser device is outside of wavelengths blocked by a safety filter used for surgical treatment lasers 52. A controller 18 controls the multiple laser devices 12-16. A graphical user interface 32 is operably attached to the controller 18 for allowing a user to select a plurality of light parameters for a light beam exiting the illuminator 10.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: Bausch & Lomb Incorporated
    Inventors: David K. Klaffenbach, Brian McCary, John Goewert, David H. Mordaunt
  • Patent number: 8709001
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 29, 2014
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20140104272
    Abstract: Various methods, techniques or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: Allergan, Inc.
    Inventors: David H. Mordaunt, G. Patrick Maxwell
  • Patent number: 8690862
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 8, 2014
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Publication number: 20140046310
    Abstract: A laser-assisted method for fully or partially separating tissue such as collagen-containing tissue is provided. In one embodiment, the method pertains to a capsolurorhexis whereby the laser-assisted method is applied to the lens capsule. A light-absorbing agent is added into or onto the tissue. A light beam with a wavelength capable of being absorbed by the light absorbing agent is then directed at the tissue to cause a thermal effect at the tissue following a predetermined closed curve with the goal to avoid irregularity- or potential tears in the resulting rim of the tissue.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Inventor: David H. Mordaunt
  • Patent number: 8648853
    Abstract: Various methods, techniques or modules are provided to allow for the automated analysis of the 3-D representation of the upper front torso (i) to recognize 3-D anatomical features, (ii) to orient the subject with reference to their anatomy or a display, (iii) to determine dimensional analysis including direct point-to-point lines, 3-D surface lines, and volume values, (iv) to simulate the outcome with the addition of breast implants including breast and nipple positioning, (v) to assist in the selection of the breast implants, and/or (vi) to assist in the planning of breast surgery. The automated analysis is based on the analysis of changes in a 3-D contour map of the upper torso, orientation analysis of 3-D features and planes, color analysis of 3-D features, and/or dimensional analysis of 3-D features and positions of the upper torso.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 11, 2014
    Assignee: Allergan, Inc.
    Inventors: David H. Mordaunt, G. Patrick Maxwell