Patents by Inventor David Heiner

David Heiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846580
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: December 19, 2023
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Publication number: 20210208055
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 8, 2021
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Patent number: 10955332
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: March 23, 2021
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Publication number: 20180195950
    Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.
    Type: Application
    Filed: December 20, 2017
    Publication date: July 12, 2018
    Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
  • Patent number: 8912130
    Abstract: Disclosed herein are methods of method of making a substrate for performing a chemical synthesis reaction.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 16, 2014
    Assignee: Illumina, Inc.
    Inventors: Brett Ellman, Michal Lebl, Aaron Jones, Steve Fambro, David Heiner
  • Patent number: 8753584
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 17, 2014
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State Univeristy
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20140080205
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Patent number: 8597594
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: December 3, 2013
    Assignee: Illumina, Inc.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain, Michael Schroeder
  • Publication number: 20120292190
    Abstract: An apparatus for fragmenting nucleic acid. The apparatus includes a sample reservoir that comprises a fluid having nucleic acids. The apparatus can also include a shear wall that is positioned within the sample reservoir. The shear wall includes a porous core medium that has pores that are sized to permit nucleic acids to flow therethrough. The apparatus also includes first and second chambers that are separated by the shear wall. The first and second chambers are in fluid communication with each other through the porous core medium of the shear wall. Also, the apparatus may include first and second electrodes that are located within the first and second chambers, respectively. The first and second electrodes are configured to generate an electric field that induces a flow of the sample fluid. The nucleic acids move through the shear wall thereby fragmenting the nucleic acids.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 22, 2012
    Applicants: THE ARIZONA BOARD OF REGENTS FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY, ILLUMINA, INC.
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Patent number: 8252250
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 28, 2012
    Assignees: Illumina, Inc., The Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Publication number: 20120012250
    Abstract: Disclosed herein are methods of method of making a substrate for performing a chemical synthesis reaction.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 19, 2012
    Inventors: Brett Ellman, Michal Lebl, Aaron Jones, Steve Fambro, David Heiner
  • Patent number: 8022013
    Abstract: A method of forming a solid-phase support, the method including the steps of providing a substrate having a reaction vessel, dispensing a particle in the reaction vessel, and permanently bonding the particle in the substrate within the reaction vessel. The particle may include a microbead. The particle may include controlled pore glass. A method of synthesis is also disclosed that includes including the steps of providing a solid-phase support including a particle embedded to the substrate adjacent a surface of substrate, the particle being functionalized to covalently attach an intermediate compound of a synthetic reaction, dispensing a liquid including a reagent to the solid-phase support to effect the synthetic reaction, and removing the liquid from the solid-phase support by centrifugation, whereby the intermediate compound remains attached to the substrate by the particle.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 20, 2011
    Assignee: Illumina, Inc.
    Inventors: Brett Ellman, Michal Lebl, Aaron Jones, Steve Fambro, David Heiner
  • Patent number: 7802337
    Abstract: A ramp assembly includes an elongated frame sized and shaped to extend between a first door and a second door aligned opposite each other on opposed sides of a vehicle; a first sectional ramp section having a first end and a second end; and a second sectional ramp having a first end and a second end. The first sectional ramp is slidably moveable along the frame from a stored position to a deployed position on either of the opposed sides of the vehicle. The second sectional ramp is positioned adjacent the first sectional ramp and is slidably moveable along the frame from a stored position to a deployed position on either of the opposed sides of the vehicle. The ramp assembly also includes a first locking mechanism coupled to the first end of each of the first sectional ramp and the second sectional ramp; and a second locking mechanism coupled to the second end of each of the first sectional ramp and the second sectional ramp.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 28, 2010
    Assignee: Marshall Elevator Company
    Inventors: Linda van Roosmalen, Francis S. Glogowski, David A. Heiner, Robert S. Jamison, III, Peter D. Horvath, Steven Walker
  • Publication number: 20100187115
    Abstract: An electroosmotic (EO) pump is provided that includes a housing having a pump cavity, a porous core medium and electrodes. The porous core medium is positioned within the pump cavity to form an exterior reservoir that extends at least partially about an exterior surface of the porous core medium. The porous core medium has an open inner chamber provided therein. The inner chamber represents an interior reservoir. The electrodes are positioned in the inner chamber and are positioned proximate the exterior surface. The electrodes induce flow of a fluid through the porous core medium between the interior and exterior reservoirs, wherein a gas is generated when the electrodes induce flow of the fluid. The housing has a fluid inlet to convey the fluid to one of the interior reservoir and the exterior reservoir. The housing has a fluid outlet to discharge the fluid from another of the interior reservoir and the exterior reservoir. The housing has a gas removal device to remove the gas from the pump cavity.
    Type: Application
    Filed: November 25, 2009
    Publication date: July 29, 2010
    Applicant: ILLUMINA CORPORATION
    Inventors: Jonathan Posner, Kamil Salloum, Michal Lebl, Mark Reed, Dale Buermann, Matthew Hage, Bryan Crane, David Heiner, Robert Kain
  • Publication number: 20090106918
    Abstract: A ramp assembly includes an elongated frame sized and shaped to extend between a first door and a second door aligned opposite each other on opposed sides of a vehicle; a first sectional ramp section having a first end and a second end; and a second sectional ramp having a first end and a second end. The first sectional ramp is slidably moveable along the frame from a stored position to a deployed position on either of the opposed sides of the vehicle. The second sectional ramp is positioned adjacent the first sectional ramp and is slidably moveable along the frame from a stored position to a deployed position on either of the opposed sides of the vehicle. The ramp assembly also includes a first locking mechanism coupled to the first end of each of the first sectional ramp and the second sectional ramp; and a second locking mechanism coupled to the second end of each of the first sectional ramp and the second sectional ramp.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventors: Linda Van Roosmalen, Francis S. Glogowski, David A. Heiner, Robert S. Jamison, III, Peter D. Horvath, Steven Walker
  • Publication number: 20070117178
    Abstract: Described is a system and method for synthesizing polymeric molecules such as oligonucleotides and polypeptides. The system is capable of continuously synthesizing molecules by providing an array of reaction sites and an array of stations for carrying out synthetic manipulations. The reaction sites in the former array can be placed in a fixed order and at fixed intervals relative to each other. Similarly, the stations can be placed in a fixed order and at fixed intervals relative to each other. The two arrays can be moved relative to each other such that the stations carry out desired steps of a reaction scheme at each reaction site. The relative locations of the stations and the schedule for the relative movement can correlate with the order and duration of reaction steps in the reaction scheme such that once a reaction site has completed a cycle of interacting with the full array of stations then the reaction scheme is complete.
    Type: Application
    Filed: September 13, 2006
    Publication date: May 24, 2007
    Inventors: David Heiner, Aaron Jones, Steven Fambro, Mark Nibbe, Steven Burgett, Brett Ellman, Michal Lebl
  • Publication number: 20070110638
    Abstract: Described is a system and method for synthesizing polymeric molecules such as oligonucleotides and polypeptides. The system is capable of continuously synthesizing molecules by providing an array of reaction sites and an array of stations for carrying out synthetic manipulations. The reaction sites in the former array can be placed in a fixed order and at fixed intervals relative to each other. Similarly, the stations can be placed in a fixed order and at fixed intervals relative to each other. The two arrays can be moved relative to each other such that the stations carry out desired steps of a reaction scheme at each reaction site. The relative locations of the stations and the schedule for the relative movement can correlate with the order and duration of reaction steps in the reaction scheme such that once a reaction site has completed a cycle of interacting with the full array of stations then the reaction scheme is complete.
    Type: Application
    Filed: September 13, 2006
    Publication date: May 17, 2007
    Inventors: David Heiner, Aaron Jones, Steven Fambro, Mark Nibbe, Steve Burgett, Brett Ellman, Michal Lebl
  • Publication number: 20050048667
    Abstract: A method of forming a solid-phase support, the method including the steps of providing a substrate having a reaction vessel, dispensing a particle in the reaction vessel, and permanently bonding the particle in the substrate within the reaction vessel. The particle may include a microbead. The particle may include controlled pore glass. A method of synthesis is also disclosed that includes including the steps of providing a solid-phase support including a particle embedded to the substrate adjacent a surface of substrate, the particle being functionalized to covalently attach an intermediate compound of a synthetic reaction, dispensing a liquid including a reagent to the solid-phase support to effect the synthetic reaction, and removing the liquid from the solid-phase support by centrifugation, whereby the intermediate compound remains attached to the substrate by the particle.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 3, 2005
    Inventors: Brett Ellman, Michal Lebl, Aaron Jones, Steve Fambro, David Heiner