Patents by Inventor David Hinkley

David Hinkley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8428925
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Publication number: 20120109612
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Patent number: 8121823
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: February 21, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Publication number: 20100018718
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Application
    Filed: September 11, 2007
    Publication date: January 28, 2010
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Publication number: 20050011551
    Abstract: A wrap around contact is disposed on the edge of a solar cell panel for providing electrical connections between a thin film solar cell contact and electrical conductors in a flex circuit for routing electrical energy produced by the solar cells to a power bus. The wrap around contact wraps around an edge of a solar cell on top of which is the solar cell contact. Under the solar cell, power bus conductor traces are laser welded to the wrap around contract so as to connect the flex circuit power bus to the silver contact of the thin film solar cell.
    Type: Application
    Filed: July 14, 2003
    Publication date: January 20, 2005
    Inventors: Edward Simburger, David Hinkley, Craig Marshall, Alan Perry, Suraj Rawal
  • Patent number: 4613960
    Abstract: Disclosed is a method for constructing an optimal pilot trace from a gather of seismic traces, which pilot trace can be used to obtain statics estimates for time correction of the gathered traces prior to common depth point stacking. During construction of the optimal pilot trace, the statics estimates are inherently obtained.
    Type: Grant
    Filed: September 8, 1983
    Date of Patent: September 23, 1986
    Assignee: Mobil Oil Corporation
    Inventors: David Hinkley, Keh Pann
  • Patent number: 4577298
    Abstract: Disclosed is a method for estimating and correcting source and receiver statics contained in recorded and gathered seismic traces. Measurements based on the time of arrival of reflection and refraction signal components in the recorded and gathered traces are used to produce source-receiver statics estimates, which are in turn used to correctly time shift the individual traces of the gather for subsequent common depth point (CDP) gathering and stacking.
    Type: Grant
    Filed: September 8, 1983
    Date of Patent: March 18, 1986
    Assignee: Mobil Oil Corporation
    Inventor: David Hinkley
  • Patent number: 4489239
    Abstract: A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The lasers are aimed at a topographical target along a system axis and the beams successively interrupted by a chopper wheel.The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise to substantially improve the signal-to-noise ratio of the detector. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.
    Type: Grant
    Filed: September 24, 1982
    Date of Patent: December 18, 1984
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William B. Grant, E. David Hinkley, Jr.