Patents by Inventor David Hurwitz

David Hurwitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11016126
    Abstract: Current measurement apparatus comprises a measurement arrangement and a signal source. The measurement arrangement is configured to measure a current signal drawn by a load. The signal source is operative to apply a reference input signal to the measurement arrangement whereby an output signal from the measurement arrangement comprises a load output signal corresponding to the load drawn current signal and a reference output signal corresponding to the reference input signal.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 25, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Jonathan Ephraim David Hurwitz, Seyed Amir Ali Danesh, William Michael James Holland
  • Patent number: 11009558
    Abstract: The present invention relates to current measurement apparatus. The current measurement apparatus comprises first and second measurement devices with each of the first and second measurement devices being operative to measure current in a respective one of a live conductor and a neutral conductor substantially simultaneously. The current measurement apparatus is operative to make plural different determinations in dependence on the substantially simultaneous current measurements.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 18, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Seyed Amir Ali Danesh, Jonathan Ephraim David Hurwitz
  • Patent number: 10998914
    Abstract: An ADC circuit that can resolve the most significant bits (MSBs) using a first circuit during a first stage of a multi-stage conversion and resolve the least significant bits (LSBs) using a second circuit during a second stage of the multi-stage conversion. This can be used, for example, in massively parallel applications where the reference level generation can be shared between thousands of converters.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: May 4, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Jonathan Ephraim David Hurwitz, Edward Chapin Guthrie, Joseph Leandro Balais Peje
  • Publication number: 20210048478
    Abstract: This disclosure relates to monitoring the condition of electrical/electronic switches over time by monitoring the impedance of the switch. The condition of switches can degrade as they age, which can reduce their performance and may ultimately lead to failure. In many applications, particularly high-voltage applications, the reliable operation of switches may be very important and failures can present a safety risk and cause costly unscheduled system downtime for repairs. It has been realised that as the condition of switches change, their impedance changes, so monitoring the impedance can give a good indication of the condition of the switch, enabling potential faults/failures to be identified early and acted upon pre-emptively.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: Seyed Amir Ali Danesh, Jonathan Ephraim David Hurwitz, William Michael James Holland, Petre Minciunescu
  • Publication number: 20210021435
    Abstract: The present disclosure relates to a PUF apparatus and method for generating a persistent, random number. The generated number is random in that each particular instance of PUF apparatus should generate a randomly different number to all other instances of PUF apparatus, and is persistent in that each particular instance of the PUF apparatus should repeatedly generate the same number, within acceptable error correction tolerances. The persistent, random number is determined by selecting one or more PUF cells, each comprising a matched pair of transistors that are of identical design, and comparing an on-state characteristic of the pair (e.g., turn-on threshold voltage or gate-source voltage). The difference in on-state characteristic of each selected pair of transistors is caused by random manufacturing differences between the transistors. This causes the randomness between each different instance of PUF apparatus, and should be relatively stable over time to provide persistence of the generated number.
    Type: Application
    Filed: August 3, 2020
    Publication date: January 21, 2021
    Inventor: Jonathan Ephraim David Hurwitz
  • Patent number: 10892722
    Abstract: Differential sampling circuits may be adversely affected by changes in common mode voltage. Changes in the common mode voltage may alter the on resistance of transistor switches which it turn may mean that small signal changes are not correctly observed against a bigger common mode signal. The present disclosure relates to a way of improving the ability to resolve small differential signal changes by varying the supply or drive voltage to a component to compensate for common mode voltage changes.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 12, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Jonathan Ephraim David Hurwitz, George Redfield Spalding, Jr., Seyed Amir Ali Danesh
  • Patent number: 10871382
    Abstract: Various examples are directed to configuring a configurable hardware module to perform a measurement of a physical quantity. A configuration manager may receive an indication of the physical quantity and performance factor data describing the measurement of the physical quantity. The configuration manager may generate a hardware configuration of the hardware based at least in part on the indication of the physical quantity and the performance factor data. The hardware configuration may comprise instruction data to configure the hardware module to execute a dynamic measurement of the physical quantity. The configuration manager may also generate configuration data describing the hardware configuration, wherein the configuration data comprises simulation data comprising input parameters for a simulation of the hardware configuration and hardware configuration data for configuring a hardware module to implement at least a portion of the hardware configuration.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: December 22, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventors: Colin G. Lyden, Claire Croke, Mack Roger Lund, Alan Clohessy, Meabh Shine, Rosemary B. Ryan, Aine M. Joyce, Aine McCarthy, Mary McCarthy, Thomas M. MacLeod, Jason Cockrell, Michael C. W. Coln, Gustavo Castro, Sean Kowalik, Colm P. Ronan, Michael Edward Bradley, Michael Mueck, Jonathan Ephraim David Hurwitz, Aileen Ritchie
  • Patent number: 10859605
    Abstract: The present disclosure provides an improved Rogowski-type current sensor. The current measurement coil, and the compensation coil are provided on the same board. The measurement coil and the compensation coil are arranged such that they at least partially overlap by virtue of each repeatedly changing side of the board. This arrangement makes the current sensor far better at rejecting interference than certain other PCB Rogowski type coil arrangements.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: December 8, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventor: Jonathan Ephraim David Hurwitz
  • Patent number: 10845393
    Abstract: A measurement circuit is arranged to make several measurements, either at different times or in respect of different frequency components of currents measured by current sensors in respective phases of a multiphase supply system. The measurements are then used to correct for discrepancies in the transfer function of the sensors.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 24, 2020
    Assignee: Analog Devices International Limited Company
    Inventors: Jonathan Ephraim David Hurwitz, William Michael James Holland, Seyed Amir Ali Danesh
  • Patent number: 10845832
    Abstract: A voltage-to-current converter can be configured to generate a current based on an input voltage and for part of the time use the generated current as the output current of the voltage-to-current converter, and for part of the time use the generated current as a current source for the operation of the voltage-to-current converter. This arrangement can reduce the need for high performance current mirror circuits within the voltage-to-current converter, thereby reducing the cost and complexity of the voltage-to-current converter and improving precision and accuracy.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 24, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventor: Jonathan Ephraim David Hurwitz
  • Publication number: 20200344093
    Abstract: Various examples are directed to isolated analog-to-digital converter (ADC) circuits comprising a first side that is separated from a second side by an isolator. A first ADC positioned on the first side may be configured to convert a first analog input signal to a first side multi-bit digital signal. A digital modulator on the first side may be configured to convert the first side multi-bit digital signal to a first single-bit stream. A first filter positioned on the second side may be configured to receive the first single-bit stream across the first isolator and to generate a first reconstructed multi-bit digital signal using the first single -bit stream.
    Type: Application
    Filed: May 11, 2018
    Publication date: October 29, 2020
    Inventors: Ryan Pinto, Jonathan Ephraim David Hurwitz, Lawrence Getzin
  • Patent number: 10809752
    Abstract: A technique for improving the stability of a voltage reference is provided. The implementation of technique is simple and elegant and does not involve a noise penalty. A compensation resistor is provided on one end of a string of resistors used to set a ?VBE in a PTAT cell and to set a gain applied to the PTAT cell voltage.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: October 20, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventors: Jonathan Ephraim David Hurwitz, Gergely Toldi
  • Publication number: 20200287729
    Abstract: The present disclosure relates to a PUF apparatus and method for generating a persistent, random number. The generated number is random in that each particular instance of PUF apparatus should generate a randomly different number to all other instances of PUF apparatus, and is persistent in that each particular instance of the PUF apparatus should repeatedly generate the same number, within acceptable error correction tolerances. The persistent, random number is determined by selecting one or more PUF cells, each comprising a matched pair of transistors that are of identical design, and comparing an on-state characteristic of the pair (e.g., turn-on threshold voltage or gate-source voltage). The difference in on-state characteristic of each selected pair of transistors is caused by random manufacturing differences between the transistors. This causes the randomness between each different instance of PUF apparatus, and should be relatively stable over time to provide persistence of the generated number.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Applicant: Analog Devices International Unlimited Company
    Inventor: Jonathan Ephraim David Hurwitz
  • Patent number: 10764069
    Abstract: The present disclosure relates to a PUF apparatus and method for generating a persistent, random number. The generated number is random in that each particular instance of PUF apparatus should generate a randomly different number to all other instances of PUF apparatus, and is persistent in that each particular instance of the PUF apparatus should repeatedly generate the same number, within acceptable error correction tolerances. The persistent, random number is determined by selecting one or more PUF cells, each comprising a matched pair of transistors that are of identical design, and comparing an on-state characteristic of the pair (e.g., turn-on threshold voltage or gate-source voltage). The difference in on-state characteristic of each selected pair of transistors is caused by random manufacturing differences between the transistors. This causes the randomness between each different instance of PUF apparatus, and should be relatively stable over time to provide persistence of the generated number.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: September 1, 2020
    Assignee: Analog Devices International Unlimited Company
    Inventor: Jonathan Ephraim David Hurwitz
  • Publication number: 20200271841
    Abstract: The present disclosure provides numerous applications for the use of liquid crystal polarization gratings (LCPGs) to controllably steer light. When combined with an image sensor, light generated or reflected from different fields of view (FOV) can be steered, allowing an increase in the FOV or the resolution of the image. Further, the LCPG can stabilize the resulting image, counteracting any movement of the image sensor. The combination of LCPGs and liquid crystal waveguides (LCWGs) allows fine deflection control of light (from the LCWG) over a wild field of view (from the LCPG). Further applications of LCPGs include object tracking and the production of depth images using multiple imaging units and independently steered LCPGs. The LCPG may be used in controlling both the projection and reception of light.
    Type: Application
    Filed: February 17, 2020
    Publication date: August 27, 2020
    Inventors: Eoin E. English, Andrew William Sparks, Scott Robert Davis, Tyler Adam Dunn, Maurizio Zecchini, Michael Ziemkiewicz, Ronald A. Kapusta, Javier Calpe Maravilla, Paul O'Sullivan, Jonathan Ephraim David Hurwitz, Erik D. Barnes, Monica Redon Segrera, krystian Balicki
  • Publication number: 20200264311
    Abstract: Time of Flight (ToF) image processing systems and methods for proximity detection are disclosed. In particular, use of a separate proximity detector can be eliminated by using the time of flight image processing system as disclosed herein. In particular, the time of flight image processing system has two modes: a low resolution proximity detection mode and a high resolution imaging mode.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Applicant: Analog Devices International Unlimited Company
    Inventors: Nicolas LE DORTZ, Jonathan Ephraim David HURWITZ, Erik D. BARNES
  • Publication number: 20200264310
    Abstract: Time of Flight (ToF) image processing methods include collecting correlation samples to calculate a phase estimate. Systems and methods are provided for collecting correlation samples from multiple pixels. An image processing system for continuous waves includes a light source configured to emit light, an image sensor having a plurality of pixels, and a processor configured to collect correlation samples from a subset of the plurality of pixels in the image sensor.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Applicant: Analog Devices International Unlimited Company
    Inventors: Nicolas LE DORTZ, Jonathan Ephraim David HURWITZ, Erik D. BARNES
  • Publication number: 20200267367
    Abstract: An image processing system for time-of-flight depth imaging includes a processor for determining depth measurements using different modes of operation. The processor determines depth measurements in a first set of frames using a second set of frames. The first mode is a continuous wave modulation mode without depth linearization and the second mode is a continuous wave modulation mode with depth linearization. The depth estimates collected in the second mode using depth linearization are used to correct the depth estimates collected in the first mode.
    Type: Application
    Filed: January 14, 2020
    Publication date: August 20, 2020
    Applicant: Analog Devices International Unlimited Company
    Inventors: Nicolas LE DORTZ, Jonathan Ephraim David HURWITZ, Erik D. BARNES
  • Patent number: 10712369
    Abstract: Embodiments of the present disclosure provide mechanisms for measuring currents flowing in one or more conductor wires. The mechanisms are based on using magnetic sensor pairs arranged within a housing with an opening for the wires, where each magnetic sensor pair can generate a pair of signals indicative of magnetic fields in two different directions. The outputs of the sensor pairs can be used to derive a measure of current(s) flowing through the one or more wires. The use of magnetic sensor pairs that can measure magnetic field in two different directions may enable simultaneous current measurement in multiple wires placed within the opening, improve accuracy of current measurements while relaxing requirements for precise control of the placement of the wire(s), reduce the impact of stray magnetic interference, and enable both AC and DC measurements.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: July 14, 2020
    Assignee: ANALOG DEVICES GLOBAL UNLIMTED COMPANY
    Inventors: Boris Lerner, Yogesh Jayaraman Sharma, Sefa Demirtas, Jochen Schmitt, Paul Blanchard, Arthur J. Kalb, Harvey Weinberg, Jonathan Ephraim David Hurwitz
  • Patent number: 10689769
    Abstract: The inventive subject matter is directed to continuous electrochemical production of highly pure micro- or nanostructured lead that at least partially encloses the electroprocessing solvent and molecular hydrogen and optional guest compounds to form a mixed matrix. Such compositions are particularly suitable for cold forming of various structures and/or for alloy and composite material production.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: June 23, 2020
    Assignee: Aqua Metals Inc.
    Inventors: Stephen R. Clarke, Michael John King, Brian Dougherty, Michael David Hurwitz