Patents by Inventor David J. Barta

David J. Barta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090273128
    Abstract: A first expression of an embodiment of the invention is for apparatus including a magnetorheological-fluid (MR-fluid) hydraulic mount. The mount includes an internal MR-fluid cavity and a partition plate assembly. The partition plate assembly partitions the cavity into first and second MR-fluid chambers. The mount is adapted to receive an MR-fluid pressure sensor in fluid communication with the second MR-fluid chamber. A second expression of an embodiment of the invention is for apparatus including an MR-fluid hydraulic mount. The mount includes an internal MR-fluid cavity, a partition plate assembly, and an MR-fluid pressure sensor. The partition plate assembly partitions the cavity into first and second MR-fluid chambers. The MR-fluid pressure sensor is in fluid communication with the second MR-fluid chamber.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Inventors: Mark O. Bodie, David J. Barta, Mark W. Long, Thorsten Brobeil, Marco Ujhasi, Thorsten Koch
  • Publication number: 20090276098
    Abstract: A method of the invention is for controlling an MR-fluid hydraulic mount connected to a vehicle engine. The mount includes an internal MR-fluid cavity. The mount includes a partition plate assembly partitioning the cavity into first and second MR-fluid chambers. The partition plate assembly has an orifice extending from the first MR-fluid chamber to the second MR-fluid chamber. The mount includes an electric coil positioned to magnetically influence the orifice. The method includes, when the vehicle engine is at idle, determining a reference pressure as a fluid pressure within the second MR-fluid chamber. The method includes, when the vehicle engine is above idle, determining a command electric current to be applied to the electric coil using at least a difference between the reference pressure and a current fluid pressure within the second MR-fluid chamber. The method includes applying the command electric output current to the electric coil.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Inventors: Mark O. Bodie, David J. Barta, Thorsten Brobeil, Marco Ujhasi, Thorsten Koch
  • Patent number: 7240754
    Abstract: A suspension system having a frame, a cab having a front portion pivotally mounted to the frame and at least one actuator mounted between a rear portion of the cab and the frame. A position sensor is mounted adjacent the rear portion of the cab for generating a first signal indicating a position of the cab relative to the frame, an accelerometer is mounted to the frame for generating a second signal indicating an acceleration of the frame relative to gravity and an electronic control receives the first and second signals from the position sensor and the accelerometer and generates a control signal for controlling the actuator in response to the first and second signals.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: July 10, 2007
    Assignee: Delphi Technologies, Inc.
    Inventors: David J. Barta, William C. Kruckemeyer, Todd A. Bishop, Stephan A. Lubbers
  • Patent number: 6892864
    Abstract: A temperature compensation method for controlling a damping force of a magnetorheological (MR) damper is disclosed. First, a base operating current as a function of a desired force level of a damping force of the MR damper is determined, and a temperature compensation as a function of an operating temperature of the MR damper is determined. Finally, the temperature compensation is applied to the base operating current to generate a compensated operating current as a function of the desired force level of the damping force and the operating temperature of the MR damper. To refine the compensated operating current, the temperature compensation can be determined as both a function of the operating temperature of the MR damper and a relative velocity of the MR damper.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: May 17, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Vardarajan R. Iyengar, Bruce A. Heaston, John F. Hoying, David A. Shal, Darin D. Dellinger, Khaled M. Jundi, Jesse D. Jones, Timothy J. Juuhl, Robin Oakley, David J. Barta, Michael R. Lukuc
  • Publication number: 20040154887
    Abstract: A suspension control system includes a plurality of damper assemblies, each damper assembly including an integrated velocity sensor and an integrated local controller with a drive unit connected to a damper coil of the damper assembly. A central controller may be connected for communication with the integrated local controller of each damper assembly. The local controller of each damper assembly normally controls the damper assembly independently of the central controller or other damper assemblies for carrying out at least one control function of the damper assembly. When provided, the central controller communicates with the local controller of each damper assembly for overriding local control functions. A related self-contained piston damper unit is also provided.
    Type: Application
    Filed: November 26, 2003
    Publication date: August 12, 2004
    Inventors: Thomas W. Nehl, Fang Deng, David J. Barta, Eric L. Jensen, Bruce A. Heaston, Alexander A. Alexandridis, Malakondaiah Naidu, Suresh Gopalakrishnan
  • Patent number: 6758041
    Abstract: A brake apparatus and method utilize an electric power brake booster for operating a push rod actuated hydraulic master cylinder. The existing vehicle electrical system provides electric power for the power brake booster, thus eliminating the need for engine driven or auxiliary pressure/vacuum sources. The electric power brake booster includes an electrically powered actuator having an output shaft adapted for operative connection to the master cylinder, and an input for receipt of a signal indicative of force applied to the push rod. The electrically powered actuator augments the force applied to the push rod in response to the signal indicative of the force applied to the push rod. The booster may include a sensor for sensing force applied to the push rod and generating the signal indicative of the force applied to the push rod.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: July 6, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Todd A. Bishop, William C. Kruckemeyer, David J. Barta
  • Publication number: 20040050045
    Abstract: A brake apparatus and method utilize an electric power brake booster for operating a push rod actuated hydraulic master cylinder. The existing vehicle electrical system provides electric power for the power brake booster, thus eliminating the need for engine driven or auxiliary pressure/vacuum sources. The electric power brake booster includes an electrically powered actuator having an output shaft adapted for operative connection to the master cylinder, and an input for receipt of a signal indicative of force applied to the push rod. The electrically powered actuator augments the force applied to the push rod in response to the signal indicative of the force applied to the push rod. The booster may include a sensor for sensing force applied to the push rod and generating the signal indicative of the force applied to the push rod.
    Type: Application
    Filed: September 12, 2002
    Publication date: March 18, 2004
    Applicant: DELPHI TECHNOLOGIES INC.
    Inventors: Todd A. Bishop, William C. Kruckemeyer, David J. Barta
  • Publication number: 20040046336
    Abstract: A suspension system for a vehicle. A control arm is attachable to the vehicle frame by a first bushing and by a second bushing and is attachable to the knuckle by a ball joint. A torsion spring assembly has a torsion tube and a torsion bar positioned within the torsion tube. A first end portion of the torsion bar is attached to a first end portion of the torsion tube, and a second end portion of the torsion bar extends beyond a second end of the torsion tube and is attached to the control arm. No portion of the torsion tube is immobilized with respect to the frame. A moment bar has a first end portion attached to the torsion tube and has a second end portion attachable to the frame.
    Type: Application
    Filed: August 20, 2003
    Publication date: March 11, 2004
    Inventors: Eric L. Jensen, Todd A. Bishop, William C. Kruckemeyer, Mark O. Bodie, David J. Barta
  • Publication number: 20030195683
    Abstract: The invention provides a method of controlling at least one magnetorheological damper. The invention also provides a computer usable medium including a program and a suspension control system for achieving the same. The method includes calculating a power input coefficient based on at least one power input characteristic. A power dissipation coefficient is calculated based on at least one power dissipation characteristic. A damper temperature is estimated based on the calculated power input coefficient and the calculated power dissipation coefficient. At least one dampening force characteristic is modulated based on the estimated damper temperature.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 16, 2003
    Applicant: DELPHI TECHNOLOGIES INC.
    Inventors: Robin Oakley, David A. Shal, David J. Barta
  • Publication number: 20030070892
    Abstract: A temperature compensation method for controlling a damping force of a magnetorheological (MR) damper is disclosed. First, a base operating current as a function of a desired force level of a damping force of the MR damper is determined, and a temperature compensation as a function of an operating temperature of the MR damper is determined. Finally, the temperature compensation is applied to the base operating current to generate a compensated operating current as a function of the desired force level of the damping force and the operating temperature of the MR damper. To refine the compensated operating current, the temperature compensation can be determined as both a function of the operating temperature of the MR damper and a relative velocity of the MR damper.
    Type: Application
    Filed: October 16, 2001
    Publication date: April 17, 2003
    Applicant: DELPHI TECHNOLOGIES INC.
    Inventors: Vardarajan R. Iyengar, Bruce A. Heaston, John F. Hoying, David A. Shal, Darin D. Dellinger, Khaled M. Jundi, Jesse D. Jones, Timothy J. Juuhl, Robin Oakley, David J. Barta, Michael R. Lukuc
  • Patent number: 6456912
    Abstract: A method, system and computer readable medium storing a computer program is provided for independent control of a variable force damper system. The variable force damper system can be applied to control a vehicle suspension system. The system provides individual wheel control independent of vehicle body forces. In operation, at least one relative velocity signal and at least one body demand force is received. At least one body damper command is determined based on the body demand force. At least one wheel motion indicating parameter is determined based on the relative velocity signal. At least one wheel damper command is determined based on the wheel motion indicating parameter and a damper command is determined based on the larger of the body damper command and the wheel damper command.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: September 24, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Olivier Raynauld, David J. Barta, David Andrew Shal, Alexander Apostolos, Olivier Valee, Darin Duane Delinger, Albert Victor Fratini, Chinh Trong Nguyen
  • Patent number: 6438473
    Abstract: A method and system for controlling a vehicle suspension system comprise determining a relative velocity between a wheel and a corresponding corner of the vehicle, and determining responsive to the relative velocity a raw wheel demand force. The method and system also comprise determining a relative position between the wheel and the corresponding corner of a vehicle body, determining a scale factor responsive to the relative position of the wheel, modifying the raw wheel demand force as a function of the scale factor to determine a scaled wheel demand force, and controlling the vehicle suspension system responsive to the scaled wheel demand force.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: August 20, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: David J. Barta, Olivier Raynauld, Olivier Valee