Patents by Inventor David J. Bryan
David J. Bryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12234539Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: GrantFiled: October 10, 2023Date of Patent: February 25, 2025Assignee: ATI PROPERTIES LLCInventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Publication number: 20240287666Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: ApplicationFiled: October 10, 2023Publication date: August 29, 2024Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 11920231Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: GrantFiled: January 28, 2022Date of Patent: March 5, 2024Assignee: ATI PROPERTIES LLCInventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Publication number: 20230090733Abstract: A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.Type: ApplicationFiled: May 20, 2022Publication date: March 23, 2023Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Publication number: 20220396860Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: ApplicationFiled: January 28, 2022Publication date: December 15, 2022Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 11384413Abstract: A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.Type: GrantFiled: March 9, 2020Date of Patent: July 12, 2022Assignee: ATI PROPERTIES LLCInventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 11268179Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: GrantFiled: August 28, 2018Date of Patent: March 8, 2022Assignee: ATI PROPERTIES LLCInventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 10913991Abstract: A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.Type: GrantFiled: April 4, 2018Date of Patent: February 9, 2021Assignee: ATI PROPERTIES LLCInventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Publication number: 20200208241Abstract: A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.Type: ApplicationFiled: March 9, 2020Publication date: July 2, 2020Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Publication number: 20200071806Abstract: A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8×10?4 (24 hrs)?1 at a temperature of at least 890° F. under a load of 52 ksi.Type: ApplicationFiled: August 28, 2018Publication date: March 5, 2020Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 10513755Abstract: An article of manufacture selected from a titanium alloy fastener and a titanium alloy fastener stock including an alpha/beta titanium alloy comprising, in percent by weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.3 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; titanium; and up to a total of 0.3 of other elements. In certain embodiments, article of manufacture has an ultimate tensile strength of at least 170 ksi (1,172 MPa) and a double shear strength of at least 103 ksi (710.2 MPa). A method of manufacturing a titanium alloy fastener and a titanium alloy fastener stock comprising the alpha/beta alloy is disclosed.Type: GrantFiled: October 13, 2010Date of Patent: December 24, 2019Assignee: ATI PROPERTIES LLCInventor: David J. Bryan
-
Publication number: 20190309393Abstract: A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.Type: ApplicationFiled: April 4, 2018Publication date: October 10, 2019Inventors: John V. Mantione, David J. Bryan, Matias Garcia-Avila
-
Patent number: 10370751Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.Type: GrantFiled: July 26, 2017Date of Patent: August 6, 2019Assignee: ATI PROPERTIES LLCInventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
-
Patent number: 10144999Abstract: Processes for forming an article from an ?+? titanium alloy are disclosed. The ?+? titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The ?+? titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.Type: GrantFiled: July 19, 2017Date of Patent: December 4, 2018Assignee: ATI PROPERTIES LLCInventor: David J. Bryan
-
Patent number: 10053758Abstract: Certain embodiments of a method for increasing the strength and toughness of a titanium alloy include plastically deforming a titanium alloy at a temperature in an alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area. After plastically deforming the titanium alloy in the alpha-beta phase field, the titanium alloy is not heated to or above the beta transus temperature of the titanium alloy. After plastic deformation, the titanium alloy is heat treated at a heat treatment temperature less than or equal to the beta transus temperature minus 20° F. (11.1° C.).Type: GrantFiled: January 22, 2010Date of Patent: August 21, 2018Assignee: ATI Properties LLCInventor: David J. Bryan
-
Publication number: 20180195155Abstract: An article of manufacture selected from a titanium alloy fastener and a titanium alloy fastener stock including an alpha/beta titanium alloy comprising, in percent by weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.3 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; titanium; and up to a total of 0.3 of other elements. In certain embodiments, article of manufacture has an ultimate tensile strength of at least 170 ksi (1,172 MPa) and a double shear strength of at least 103 ksi (710.2 MPa). A method of manufacturing a titanium alloy fastener and a titanium alloy fastener stock comprising the alpha/beta alloy is disclosed.Type: ApplicationFiled: February 15, 2018Publication date: July 12, 2018Inventor: David J. Bryan
-
Publication number: 20180016670Abstract: Processes for forming an article from an ?+? titanium alloy are disclosed. The ?+? titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The ?+? titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.Type: ApplicationFiled: July 19, 2017Publication date: January 18, 2018Inventor: David J. Bryan
-
Publication number: 20170321313Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.Type: ApplicationFiled: July 26, 2017Publication date: November 9, 2017Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
-
Patent number: 9777361Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.Type: GrantFiled: March 15, 2013Date of Patent: October 3, 2017Assignee: ATI PROPERTIES LLCInventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
-
Patent number: 9765420Abstract: Processes for forming an article from an ?+? titanium alloy are disclosed. The ?+? titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The ?+? titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.Type: GrantFiled: January 25, 2016Date of Patent: September 19, 2017Assignee: ATI PROPERTIES LLCInventor: David J. Bryan