Patents by Inventor David J. Chipman

David J. Chipman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210225682
    Abstract: A platen having improved thermal conductivity and reduced friction is disclosed. In one embodiment, vertically aligned carbon nanotubes are grown on the top surface of the platen. The carbon nanotubes have excellent thermal conductivity, thus improving the transfer of heat between the platen and the workpiece. Furthermore, the friction between the carbon nanotubes and the workpiece is much lower than that with conventional embossments, reducing particle generation. In another embodiment, a support plate is disposed on the platen, wherein the carbon nanotubes are disposed on the top surface of the support plate.
    Type: Application
    Filed: January 22, 2020
    Publication date: July 22, 2021
    Inventors: Dawei Sun, Steven M. Anella, Qin Chen, Ron Serisky, Julian G. Blake, David J. Chipman
  • Patent number: 11069554
    Abstract: A platen having improved thermal conductivity and reduced friction is disclosed. In one embodiment, vertically aligned carbon nanotubes are grown on the top surface of the platen. The carbon nanotubes have excellent thermal conductivity, thus improving the transfer of heat between the platen and the workpiece. Furthermore, the friction between the carbon nanotubes and the workpiece is much lower than that with conventional embossments, reducing particle generation. In another embodiment, a support plate is disposed on the platen, wherein the carbon nanotubes are disposed on the top surface of the support plate.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: July 20, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Dawei Sun, Steven M. Anella, Qin Chen, Ron Serisky, Julian G. Blake, David J. Chipman
  • Patent number: 10157764
    Abstract: A thermal shield is disclosed that may be disposed between a heated electrostatic chuck and a base. The thermal shield comprises a thermal insulator, such as a polyimide film, having a thickness of between 1 and 5 mils. The polyimide film is coated on one side with a layer of reflective material, such as aluminum. The layer of reflective material may be between 30 and 100 nanometers. The thermal shield is disposed such that the layer of reflective material is closer to the chuck. Because of the thinness of the layer of reflective material, the thermal shield does not retain a significant amount of heat. Further, the temperature of the thermal shield remains far below the glass transition temperature of the polyimide film.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: December 18, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Dale K. Stone, David J. Chipman
  • Publication number: 20160379861
    Abstract: A thermal shield is disclosed that may be disposed between a heated electrostatic chuck and a base. The thermal shield comprises a thermal insulator, such as a polyimide film, having a thickness of between 1 and 5 mils. The polyimide film is coated on one side with a layer of reflective material, such as aluminum. The layer of reflective material may be between 30 and 100 nanometers. The thermal shield is disposed such that the layer of reflective material is closer to the chuck. Because of the thinness of the layer of reflective material, the thermal shield does not retain a significant amount of heat. Further, the temperature of the thermal shield remains far below the glass transition temperature of the polyimide film.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 29, 2016
    Inventors: Dale K. Stone, David J. Chipman
  • Patent number: 6583428
    Abstract: The invention provides apparatus by which a cooling gas is supplied from a stationary source to the back side of batch ion implanter workpieces being implanted in a rotating or spinning batch implanter process disk. The cooling gas provides improved heat transfer from the workpieces to the process disk, which may be advantageously combined with circulation of cooling fluid through passages in the process disk to remove heat therefrom. The invention further includes a rotary feedthrough employed to transfer the cooling gas from a stationary housing to a gas chamber in a rotating shaft which spins the batch implanter process disk. In addition, a seal apparatus is provided which seals the cooling gas applied to the back sides of the workpieces from the vacuum in which the front sides of the workpieces are implanted.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: June 24, 2003
    Assignee: Axcelis Technologies, Inc.
    Inventors: David J. Chipman, Bryan C. Lagos, Robert J. Mitchell, Gary Rosen, Dale K. Stone