Patents by Inventor David J. Harris

David J. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6383814
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: May 7, 2002
    Assignee: Genzyme Corporation
    Inventors: Edward R. Lee, David J. Harris, Craig S. Siegel, Mathieu B. Lane, Shirley C. Hubbard, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K Scheule, Nelson S. Yew
  • Publication number: 20020013282
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. By this invention, such cationic amphiphile is used in a state in which it is capable of accepting additional protons, i.e., it is not fully protonated. For purposes of this invention, cationic amphiphiles may be considered to encompass four general categories: (A) T-shaped/steroid-based amphiphiles; (B) T-shaped/non steroid-based amphiphiles; (C) non T-shaped/steroid based amphiphiles and (D) non T-shaped/non steroid-based amphiphiles.
    Type: Application
    Filed: October 5, 1998
    Publication date: January 31, 2002
    Inventors: JOHN MARSHALL, DAVID J. HARRIS, EDWARD R. LEE, CRAIG S. SIEGEL, SIMON J. EASTMAN, CHAU-DUNG CHANG, RONALD K. SCHEULE, SENG H. CHENG
  • Patent number: 6331524
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: December 18, 2001
    Assignee: Genzyme Corporation
    Inventors: Ronald K. Scheule, Rebecca G. Bagley, Simon J. Eastman, Seng H. Cheng, John Marshall, David J. Harris, Edward R. Lee, Craig S. Siegel, Chau-Dung Chang, S. Catherine Hubbard, Duane E. Johnson, Daniel C. Maneval, H. Michael Shepard, Richard J. Gregory
  • Patent number: 6323191
    Abstract: Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl−) channel regulated by phosphorylation and intracellular nucleotides. CFTR is the major Cl− transport pathway in airway epithelial cells. The abnormal transepithelial Cl− transport and subsequent defective fluid transport caused by CF is a result of the genetic mutations of the gene coding for the CFTR protein. The present invention is directed to the novel use of ionophores as artificial Cl− transport pathways into CF epithelia to treat the defective Cl− and fluid transport lonophores and in particular, small molecule ionophores, represent a potential novel means of treating CF. The invention also includes using an ionophore to generate chloride secretion on intact monolayers of airway epithelia cells and other epithelia cells by administering an ionophore to a mammal.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: November 27, 2001
    Assignee: Genzyme Corporation
    Inventors: David J. Harris, Edward R. Lee, Canwen Jiang, Seng H. Cheng, Mathieu Lane
  • Patent number: 6071890
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: June 6, 2000
    Assignee: Genzyme Corporation
    Inventors: Ronald K. Scheule, Rebecca G. Bagley, Simon J. Eastman, Seng H. Cheng, John Marshall, Nelson S. Yew, David J. Harris, Edward R. Lee, Craig S. Siegel
  • Patent number: 5952516
    Abstract: Cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: September 14, 1999
    Assignee: Genzyme Corporation
    Inventors: Craig S. Siegel, Edward R. Lee, David J. Harris
  • Patent number: 5948767
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: September 7, 1999
    Assignee: Genzyme Corporation
    Inventors: Ronald K. Scheule, Rebecca G. Bagley, Simon J. Eastman, Seng H. Cheng, John Marshall, Nelson S. Yew, David J. Harris, Edward R. Lee, Craig S. Siegel, Chau-Dung Chang, S. Catherine Hubbard
  • Patent number: 5948925
    Abstract: Cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: September 7, 1999
    Assignee: Genzyme Corporation
    Inventors: Mikaela N. Keynes, Craig S. Siegel, Edward R. Lee, David J. Harris
  • Patent number: 5942634
    Abstract: Cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: August 24, 1999
    Assignee: Genzyme Corporation
    Inventors: Craig S. Siegel, Edward R. Lee, David J. Harris
  • Patent number: 5939401
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. By this invention, such cationic amphiphile is used in a state in which it is capable of accepting additional protons, i.e., it is not fully protonated. For purposes of this invention, cationic amphiphiles may be considered to encompass four general categories: (A) T-shaped/steroid-based amphiphiles; (B) T-shaped/non steroid-based amphiphiles; (C) non T-shaped/steroid based amphiphiles and (D) non T-shaped/non steroid-based amphiphiles.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: August 17, 1999
    Assignee: Genzyme Corporation
    Inventors: John Marshall, David J. Harris, Edward R. Lee, Craig S. Siegel, Simon J. Eastman, Chau-Dung Chang, Ronald K. Scheule, Seng H. Cheng
  • Patent number: 5935936
    Abstract: Novel compositions are provided. Typically, the compositions comprise one or more neutral co-lipids and also a cationic amphiphile. Therapeutic compositions are prepared according to the practice of the invention by contacting a therapeutically active molecule with a dispersion of neutral co-lipid(s) and amphiphile(s).
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: August 10, 1999
    Assignees: Genzyme Corporation, University of Iowa
    Inventors: Allen J. Fasbender, Michael J. Welsh, Craig S. Siegel, Edward R. Lee, Chau-Dung Chang, John Marshall, Seng H. Cheng, David J. Harris, Simon J. Eastman, Shirley C. Hubbard, Mathieu B. Lane, Eric A. Rowe, Ronald K. Scheule, Nelson S. Yew
  • Patent number: 5925628
    Abstract: Cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 20, 1999
    Assignee: Genzyme Corporation
    Inventors: Edward R. Lee, David J. Harris, Craig S. Siegel
  • Patent number: 5912239
    Abstract: Cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: June 15, 1999
    Assignee: Genzyme Corporation
    Inventors: Craig S. Siegel, Edward R. Lee, David J. Harris
  • Patent number: 5910487
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: June 8, 1999
    Assignee: Genzyme Corporation
    Inventors: Nelson S. Yew, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K. Scheule, David J. Harris, Edward R. Lee, Craig S. Siegel
  • Patent number: 5840710
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: November 24, 1998
    Assignee: Genzyme Corporation
    Inventors: Edward R. Lee, David J. Harris, Craig S. Siegel, Mathieu B. Lane, Shirley C. Hubbard, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K. Scheule
  • Patent number: 5783565
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: July 21, 1998
    Assignee: Genzyme Corporation
    Inventors: Edward R. Lee, David J. Harris, Craig S. Siegel, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K. Scheule
  • Patent number: 5767099
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: June 16, 1998
    Assignee: Genzyme Corporation
    Inventors: David J. Harris, Edward R. Lee, Craig S. Siegel, Eric A. Rowe, Shirley C. Hubbard
  • Patent number: 5747471
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from ether or ester-linked alkyl groups, and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: May 5, 1998
    Assignee: Genzyme Corporation
    Inventors: Craig S. Siegel, David J. Harris, Edward R. Lee, Shirley C. Hubbard, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K. Scheule, Mathieu B. Lane, Eric A. Rowe
  • Patent number: 5719131
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active (therapeutic) molecules into cells. The amphiphiles contain lipophilic groups derived from steroids, from mono or dialkylamines, or from alkyl or acyl groups; and cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles with the therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, and polypeptides. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells. With respect to therapeutic compositions for gene therapy, the DNA is provided typically in the form of a plasmid for complexing with the cationic amphiphile.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: February 17, 1998
    Assignee: Genzyme Corporation
    Inventors: David J. Harris, Edward R. Lee, Craig S. Siegel, Seng H. Cheng, Simon J. Eastman, John Marshall, Ronald K. Scheule
  • Patent number: 5650096
    Abstract: Novel cationic amphiphiles are provided that facilitate transport of biologically active molecules into cells. Typically, the amphiphiles contain lipophilic groups derived from steroids or from mono or dialkylamines, and two cationic groups, protonatable at physiological pH, derived from amines, alkylamines or polyalkylamines. There are provided also therapeutic compositions prepared typically by contacting a dispersion of one or more cationic amphiphiles, with or without colipids, and therapeutic molecules. Therapeutic molecules that can be delivered into cells according to the practice of the invention include DNA, RNA, polypeptides and low molecular weight organic compounds. Representative uses of the therapeutic compositions of the invention include providing gene therapy, and delivery of antisense polynucleotides or biologically active polypeptides to cells.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: July 22, 1997
    Assignee: Genzyme Corporation
    Inventors: David J. Harris, Edward R. Lee, Craig S. Siegel, Seng H. Cheng, Simon J. Eastman, John Marshall