Patents by Inventor David J. Hasse

David J. Hasse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220152552
    Abstract: The invention relates to a method for membrane permeation of a gas flow including methane and carbon dioxide, wherein said gas flow is cooled to a temperature of 0° C. to ?60° C. before being fed into a membrane separation unit.
    Type: Application
    Filed: October 20, 2021
    Publication date: May 19, 2022
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Sarah BIGEARD, Delphine GARNAUD, David J. HASSE, Sudhir S. KULKARNI, Edgar S. SANDERS, JR., Golo ZICK
  • Patent number: 10183258
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 22, 2019
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Patent number: 10143973
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel, Dean W. Kratzer
  • Patent number: 10112149
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Raja Swaidan, David J. Hasse, Madhava R. Kosuri, Canghai Ma, Robert A. Gagliano, Henri Chevrel
  • Patent number: 9895653
    Abstract: In a process for the separation of a stream containing carbon dioxide, water and at least one light impurity including a separation step at subambient temperature, the feed stream is compressed in a compressor comprising at least two stages to form a compressed feed stream, the compressed feed stream is purified in an adsorption unit to remove water and form a dried compressed stream, the dried compressed stream or a stream derived therefrom is cooled to a subambient temperature and separated by partial condensation and/or distillation in a separation apparatus, liquid enriched in carbon dioxide is removed from the separation apparatus, the adsorption unit is regenerated using a regeneration gas and the regeneration gas is formed by separating, by permeation in a permeation unit, the dried compressed stream or a gas derived therefrom, the permeate of the permeation unit constituting the regeneration gas.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: February 20, 2018
    Assignee: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Arthur Darde, Richard Dubettier-Grenier, David J. Hasse, Sudhir S. Kulkarni, Mathieu LeClerc, Paul Terrien
  • Publication number: 20180001269
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001272
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20180001270
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the bore fluid used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL, Dean W. KRATZER
  • Publication number: 20180001271
    Abstract: Metallopolyimide precursor fibers for aging-resistant carbon molecular sieve hollow fiber membranes having enhanced selectivity include transition metal cations complexed with electronegative regions of a polyimide. CMS membranes are made by pyrolyzing the metallopolyimide precursor fibers. The cations are introduced by including, in the spin dope composition used to extrude the fibers, either a salt of the transition metal and an inorganic anion or a transition metal/organic ligand complex.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Raja SWAIDAN, David J. HASSE, Madhava R. KOSURI, Canghai MA, Robert A. GAGLIANO, Henri CHEVREL
  • Publication number: 20170304769
    Abstract: The invention relates to a method for membrane permeation of a gas flow including methane and carbon dioxide, wherein said gas flow is cooled to a temperature of 0° C. to ?60° C. before being fed into a membrane separation unit.
    Type: Application
    Filed: August 12, 2015
    Publication date: October 26, 2017
    Applicant: L'Air Liquide, Societe Anonyme pour I'Etude et I'Exploitation des Procedes Georges Claude
    Inventors: Sarah BIGEARD, Delphine GARNAUD, David J. HASSE, Sudhir S. KULKARNI, Edgar S. SANDERS, Golo ZICK
  • Patent number: 9446347
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 20, 2016
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20150174523
    Abstract: In a process for the separation of a stream containing carbon dioxide, water and at least one light impurity including a separation step at subambient temperature, the feed stream is compressed in a compressor comprising at least two stages to form a compressed feed stream, the compressed feed stream is purified in an adsorption unit to remove water and form a dried compressed stream, the dried compressed stream or a stream derived therefrom is cooled to a subambient temperature and separated by partial condensation and/or distillation in a separation apparatus, liquid enriched in carbon dioxide is removed from the separation apparatus, the adsorption unit is regenerated using a regeneration gas and the regeneration gas is formed by separating, by permeation in a permeation unit, the dried compressed stream or a gas derived therefrom, the permeate of the permeation unit constituting the regeneration gas.
    Type: Application
    Filed: July 11, 2013
    Publication date: June 25, 2015
    Inventors: Arthur Darde, Richard Dubettier-Grenier, David J. Hasse, Sudhir S. Kulkarni, Mathieu Leclerc, Paul Terrien
  • Patent number: 8734569
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 27, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20140102298
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: David J. HASSE, Sudhir S. KULKARNI, Edgar S. SANDERS, JR., Jean-Pierre TRANIER, Paul TERRIEN
  • Patent number: 8663364
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 4, 2014
    Assignee: L'Air Liquide, Société Anonyme pour l'Étude et l'Éxploitation des Procédés Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Patent number: 8617292
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 31, 2013
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20130247761
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: May 21, 2013
    Publication date: September 26, 2013
    Applicant: L'Air Liquide, Societe Anonyme pour I'Etude et Exploitation des Procedes Georges Claude
    Inventors: Edgar S. SANDERS, JR., Sarang GADRE, Michael D. BENNETT, Ian C. ROMAN, David J. HASSE, Indrasis MONDAL
  • Patent number: 8444749
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: May 21, 2013
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Edgar S. Sanders, Sarang Gadre, Michael D. Bennett, Ian C. Roman, David J. Hasse, Indrasis Mondal
  • Publication number: 20110247360
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 13, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: David J. HASSE, Sudhir S. KULKARNI, Edgar S. SANDERS, JR., Jean-Pierre TRANIER, Paul Terrien
  • Publication number: 20110239700
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 6, 2011
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: David J. HASSE, Sudhir S. KULKARNI, Edgar S. SANDERS, JR., Jean-Pierre TRANIER, Paul Terrien