Patents by Inventor David J. Heldebrant

David J. Heldebrant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10456739
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 29, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu, Jordan P. Page
  • Patent number: 10434460
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 8, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu
  • Publication number: 20190039014
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu
  • Patent number: 10179320
    Abstract: A method of making carbon-based nano-rods from switchable ionic liquids (SWIL) that incorporates the SWIL is disclosed. Resulting nano-rods provide adsorption and spontaneous desorption of water at selected relative humidity values that find use in selected applications and devices.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: January 15, 2019
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Satish K. Nune, David J. Heldebrant, David B. Lao, Jian Liu, Greg A. Whyatt
  • Patent number: 10130907
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 20, 2018
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu
  • Publication number: 20180257024
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu, Jordan P. Page
  • Patent number: 9873828
    Abstract: An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 23, 2018
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Carlos A. Fernandez, David J. Heldebrant, Alain Bonneville, Hun Bok Jung, Kenneth C. Carroll
  • Publication number: 20170203250
    Abstract: A class of water lean, organic solvents that can bind with various acid gasses to form acid gas bound molecules having a high degree of intramolecular hydrogen bonding which enables their use as regenerable solvents for acid gas capture. Unlike the other devices described in the prior art, the present invention takes advantage of shortened distances between the portions of the molecule that form hydrogen bonds within the structures when loaded with an acid gas so as to create a molecule with a higher internal bonding affinity and a reduced proclivity for agglomeration with other molecules.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 20, 2017
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Phillip K. Koech, Deepika Malhotra, David J. Heldebrant, Vassiliki-Alexandra Glezakou, Roger J. Rousseau, David C. Cantu
  • Patent number: 9707508
    Abstract: A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 18, 2017
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: David J. Heldebrant, Ward E. Tegrotenhuis, Charles J. Freeman, Michael L. Elliott, Phillip K. Koech, Paul H. Humble, Feng Zheng, Jian Zhang
  • Publication number: 20160369162
    Abstract: An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 22, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Carlos A. Fernandez, David J. Heldebrant, Alain Bonneville, Hun Bok Jung, Kenneth C. Carroll
  • Publication number: 20160279600
    Abstract: A method of making carbon-based nano-rods from switchable ionic liquids (SWIL) that incorporates the SWIL is disclosed. Resulting nano-rods provide adsorption and spontaneous desorption of water at selected relative humidity values that find use in selected applications and devices.
    Type: Application
    Filed: March 23, 2016
    Publication date: September 29, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Satish K. Nune, David J. Heldebrant, David B. Lao, Jian Liu, Greg A. Whyatt
  • Patent number: 9447315
    Abstract: An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: September 20, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Carlos A. Fernandez, David J. Heldebrant, Alain H. R. Bonneville, Hun Bok Jung, Kenneth C. Carroll
  • Patent number: 9433892
    Abstract: A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 6, 2016
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: David J. Heldebrant, Phillip K. Koech, John C. Linehan, James E. Rainbolt, Mark D. Bearden, Feng Zheng
  • Patent number: 8980210
    Abstract: A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: March 17, 2015
    Assignee: Battelle Memorial Institute
    Inventors: David J. Heldebrant, Clement R. Yonker, Phillip K. Koech
  • Publication number: 20150060068
    Abstract: An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Carlos A. Fernandez, David J. Heldebrant, Alain H. R. Bonneville, Hun Bok Jung, Kenneth C. Carroll
  • Publication number: 20150050203
    Abstract: A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 19, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: David J. Heldebrant, Phillip K. Koech, John C. Linehan, James E. Rainbolt, Mark D. Bearden, Feng Zheng
  • Patent number: 8710265
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 29, 2014
    Assignees: Queen's University at Kingston, Georgia Tech Research Corporation
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant
  • Patent number: 8652237
    Abstract: A system and process are disclosed for selective removal and recovery of H2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 18, 2014
    Assignee: Battelle Memorial Institute
    Inventors: David J. Heldebrant, Phillip K. Koech, James E. Rainbolt, Mark D. Bearden, Feng Zheng
  • Publication number: 20130327989
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicants: GEORGIA TECH RESEARCH CORPORATION, QUEEN'S UNIVERSITY AT KINGSTON
    Inventors: Philip G. JESSOP, Charles A. ECKERT, Charles L. LIOTTA, David J. HELDEBRANT
  • Patent number: 8513464
    Abstract: A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 20, 2013
    Assignees: Georgia Tech Research Corporation, Queen's University at Kingston
    Inventors: Philip G. Jessop, Charles A. Eckert, Charles L. Liotta, David J. Heldebrant