Patents by Inventor David J Howard

David J Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10615338
    Abstract: In fabricating a radio frequency (RF) switch, a phase-change material (PCM) and a heating element underlying an active segment of the PCM are provided. A contact uniformity support layer is formed over the PCM. The PCM and the contact uniformity support layer are patterned. A contact dielectric is formed over the contact uniformity support layer. Slot lower portions of PCM contacts are formed extending through the contact dielectric and through the contact uniformity support layer, and connected to passive segments of the PCM. Wide upper portions of the PCM contacts are formed over the contact dielectric and over the slot lower portions of the PCM contacts. The contact dielectric separates the wide upper portions of the PCM contacts from the heating element so as to reduce parasitic capacitance of the RF switch. The contact uniformity support layer maintains a substantially constant thickness of the passive segments of the PCM.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 7, 2020
    Assignee: Newport Fab, LLC
    Inventors: Jefferson E. Rose, Gregory P. Slovin, Nabil El-Hinnawy, Michael J. DeBar, David J. Howard
  • Patent number: 10615072
    Abstract: A structure having isolated deep substrate vias with decreased pitch and increased aspect ratio is disclosed. The structure includes a device layer over a buried oxide layer, a deep trench extending through the device layer, a dielectric filler in the deep trench, via holes in the dielectric filler, and conductive fillers in the via holes being the isolated deep substrate vias. The dielectric filler may include silicon oxide. The conductive fillers may include tungsten or copper. An adjacent pair of the isolated deep substrate vias within the deep trench has a pitch equal to or less than 1.0 microns.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 7, 2020
    Assignee: Newport Fab, LLC
    Inventors: Arjun Kar-Roy, David J. Howard
  • Publication number: 20200091424
    Abstract: In fabricating a radio frequency (RF) switch, a phase-change material (PCM) and a heating element underlying an active segment of the PCM are provided. A contact uniformity support layer is formed over the PCM. The PCM and the contact uniformity support layer are patterned. A contact dielectric is formed over the contact uniformity support layer. Slot lower portions of PCM contacts are formed extending through the contact dielectric and through the contact uniformity support layer, and connected to passive segments of the PCM. Wide upper portions of the PCM contacts are formed over the contact dielectric and over the slot lower portions of the PCM contacts. The contact dielectric separates the wide upper portions of the PCM contacts from the heating element so as to reduce parasitic capacitance of the RF switch. The contact uniformity support layer maintains a substantially constant thickness of the passive segments of the PCM.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 19, 2020
    Inventors: Jefferson E. Rose, Gregory P. Slovin, Nabil EI-Hinnawy, Michael J. DeBar, David J. Howard
  • Publication number: 20200091428
    Abstract: A radio frequency (RF) switch includes a heating element, thermally conductive and electrically insulating layer over the heating element, a wetting dielectric layer over the thermally conductive and electrically insulating layer, and a phase-change material (PCM) over the wetting dielectric layer. At least one cladding dielectric layer can be situated over sides and/or over a top surface of the PCM. Each of the wetting dielectric layer, phase change material, and cladding dielectric layer can comprise at least germanium. A transitional dielectric layer can be situated between the thermally conductive and electrically insulating layer and the wetting dielectric layer. A contact uniformity support layer can be situated over the cladding dielectric layer.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Jefferson E. Rose, David J. Howard, Gregory P. Slovin, Nabil El-Hinnawy
  • Publication number: 20200091429
    Abstract: A semiconductor structure includes a semiconductor mesa situated on a semiconductor substrate, a trap-rich region comprising polycrystalline silicon adjacent to the semiconductor mesa, and a phase-change material (PCM) radio frequency (RF) switch. A heating element of the PCM RF switch is situated over the semiconductor mesa. An interconnect segment coupled to the PCM RF switch is situated over the trap-rich region. Alternatively, a semiconductor structure can include a trap-rich region adjacent to a single crystal region of the semiconductor substrate, where the trap-rich region is formed by implant damaging, and where the heating element of the PCM RF switch is situated over the single crystal region.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, Jefferson E. Rose, David J. Howard
  • Patent number: 10593876
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD), and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 17, 2020
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Patent number: 10593404
    Abstract: An array includes a shared pulse generator and a plurality of cells. A selected cell the plurality of cells includes a phase-change material (PCM) and a heating element, the heating element being transverse to the PCM. The array further includes a row selector configured to connect the shared pulse generator to the selected cell, and a selector configured to connect the selected cell to a ground. The shared pulse generator provides an electrical pulse to cause the heating element in the selected cell to generate a heat pulse. In one approach, the selected cell also includes a non-linear device such as a diode, and the shared pulse generator provides the electrical pulse to a PCM RF switch of the selected cell through the non-linear device to change a state of the PCM RF switch.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Newport Fab, LLC
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, David J. Howard
  • Publication number: 20200083161
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. At least one of the lower metal portions can be ohmically separated from and capacitively coupled to passive segments of the PCM, while the upper metal portions are ohmically connected to the lower metal portions. Alternatively, the lower metal portions can be ohmically connected to passive segments of the PCM, while a capacitor is formed in part by at least one of the upper metal portions. Alternatively, at least one of the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. The trench metal liner can be ohmically connected to passive segments of the PCM, while the trench metal plug is ohmically separated from, but capacitively coupled to, the trench metal liner.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200083160
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. At least one of the lower metal portions can be ohmically separated from and capacitively coupled to passive segments of the PCM, while the upper metal portions are ohmically connected to the lower metal portions. Alternatively, the lower metal portions can be ohmically connected to passive segments of the PCM, while a capacitor is formed in part by at least one of the upper metal portions. Alternatively, at least one of the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. The trench metal liner can be ohmically connected to passive segments of the PCM, while the trench metal plug is ohmically separated from, but capacitively coupled to, the trench metal liner.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200083159
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. At least one of the lower metal portions can be ohmically separated from and capacitively coupled to passive segments of the PCM, while the upper metal portions are ohmically connected to the lower metal portions. Alternatively, the lower metal portions can be ohmically connected to passive segments of the PCM, while a capacitor is formed in part by at least one of the upper metal portions. Alternatively, at least one of the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. The trench metal liner can be ohmically connected to passive segments of the PCM, while the trench metal plug is ohmically separated from, but capacitively coupled to, the trench metal liner.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200075672
    Abstract: In fabricating a semiconductor device, a shared material is formed in a resonator region of the semiconductor device and in a phase-change material (PCM) switch region of the semiconductor device. A portion of the shared material is removed to concurrently form a heat spreader comprising the shared material in the PCM switch region and a piezoelectric segment comprising the shared material in the resonator region. The piezoelectric segment in the resonator region and the heat spreader in the PCM switch region are situated at substantially the same level in the semiconductor device. The PCM switch region includes a heating element between the heat spreader and a PCM. The resonator region includes the piezoelectric segment between two electrodes.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Gregory P. Slovin, Nabil EI-Hinnawy, Jefferson E. Rose, David J. Howard
  • Publication number: 20200066695
    Abstract: In a method for wafer-to-wafer bonding, an integrated circuit (IC) wafer and a phase-change material (PCM) switch wafer are provided. The IC includes at least one active device, and has an IC substrate side and a metallization side. The PCM switch wafer has a heat spreading side and a radio frequency (RF) terminal side. A heat spreader is formed in the PCM switch wafer. In one approach, the heat spreading side of the PCM switch wafer is bonded to the metallization side of the IC wafer, then a heating element is formed between the heat spreader and a PCM in the PCM switch wafer. In another approach, a heating element is formed between the heat spreader and a PCM in the PCM switch wafer, then the RF terminal side of the PCM switch wafer is bonded to the metallization side of the IC wafer.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Inventors: Gregory P. Slovin, David J. Howard
  • Publication number: 20200059217
    Abstract: In tuning a radio frequency (RF) module including a non-volatile tunable RF filter, a desired frequency and an undesired frequency being provided by an amplifier of the RF module are detected. The non-volatile tunable RF filter is coupled to an output of the amplifier of the RF module. A factory setting of an adjustable capacitor in the non-volatile tunable RF filter is changed by factory-setting a state of a non-volatile RF switch, such that the non-volatile tunable RF filter substantially rejects the undesired frequency and substantially passes the desired frequency. The adjustable capacitor includes the non-volatile RF switch, and the factory setting of the adjustable capacitor corresponds to a factory-set state of the non-volatile RF switch. An end-user is prevented access to the non-volatile RF switch, so as prevent the end-user from modifying the factory-set state of the non-volatile RF switch.
    Type: Application
    Filed: May 22, 2019
    Publication date: February 20, 2020
    Inventors: Chris Masse, David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin
  • Publication number: 20200058865
    Abstract: A semiconductor chip or system, such as a multi-chip module (MCM), a system-in-package (SiP), and/or a printed circuit board (PCB) module, includes a substrate, a resonator and/or a micro-electrical-mechanical system (MEMS), and a phase-change material (PCM) switch. The PCM switch includes a heating element, a PCM situated over the heating element, and PCM contacts connected to passive segments of the PCM. The heating element is transverse to the PCM and approximately defines an active segment of the PCM. The PCM contacts are electrically connected to the resonator and/or the MEMS in a shared routing region of the semiconductor chip. The PCM switch is configured to engage or disengage the resonator and/or the MEMS. In one approach, a plurality of PCM switches are capable of reconfiguring an array of resonators and/or an array of MEMS. In another approach, a redundant PCM switch is electrically connected to a redundant resonator and/or a redundant MEMS.
    Type: Application
    Filed: May 3, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Nabil EI-Hinnawy
  • Publication number: 20200058856
    Abstract: A radio frequency (RF) switch includes a stressed phase-change material (PCM) and a heating element underlying an active segment of the stressed PCM and extending outward and transverse to the stressed PCM. In one approach, at least one transition layer is situated over the stressed PCM. An encapsulation layer is situated over the at least one transition layer and on first and second sides of the stressed PCM. A stressor layer is situated over the encapsulation layer and the said stressed PCM. Alternatively or additionally, contacts of the RF switch extend into passive segments of a PCM, wherein adhesion layers adhere the passive segments of the PCM to the contacts.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Jefferson E. Rose, Gregory P. Slovin, Nabil EI-Hinnawy
  • Publication number: 20200058867
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD), and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Publication number: 20200058855
    Abstract: In fabricating a radio frequency (RF) switch, a heat spreader is provided and a heating element is deposited. A thermally conductive and electrically insulating material is deposited over the heating element. The heating element and the thermally conductive and electrically insulating material are patterned, where the thermally conductive and electrically insulating material is self-aligned with the heating element. A layer of an upper dielectric is deposited. A conformability support layer is optionally deposited over the upper dielectric and the thermally conductive and electrically insulating material. A phase-change material is deposited over the optional conformability support layer and the underlying upper dielectric and the thermally conductive and electrically insulating material.
    Type: Application
    Filed: August 30, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, Jefferson E. Rose, David J. Howard, Michael J. DeBar, Nabil El-Hinnawy
  • Publication number: 20200058851
    Abstract: A semiconductor device includes a substrate and a phase-change material (PCM) radio frequency (RF) switch, having a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM and underlies an active segment of the PCM. In one approach, the PCM RF switch is situated over the substrate, and the substrate is a heat spreader for the PCM RF switch. An integrated passive device (IPD) is disposed in an interlayer dielectric above the PCM RF switch, and is a metal resistor, a metal-oxide-metal (MOM) capacitor, and/or and inductor. In another approach, the PCM RF switch is disposed in an interlayer dielectric above the IPD, and the IPD is a poly resistor and/or a capacitor.
    Type: Application
    Filed: February 13, 2019
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058628
    Abstract: In a method for wafer-to-wafer bonding, an integrated circuit (IC) wafer and a phase-change material (PCM) switch wafer are provided. The IC includes at least one active device, and has an IC substrate side and a metallization side. The PCM switch wafer has a heat spreading side and a radio frequency (RF) terminal side. A heat spreader is formed in the PCM switch wafer. In one approach, the heat spreading side of the PCM switch wafer is bonded to the metallization side of the IC wafer, then a heating element is formed between the heat spreader and a PCM in the PCM switch wafer. In another approach, a heating element is formed between the heat spreader and a PCM in the PCM switch wafer, then the RF terminal side of the PCM switch wafer is bonded to the metallization side of the IC wafer.
    Type: Application
    Filed: May 15, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, David J. Howard
  • Publication number: 20200058581
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. At least one of the lower metal portions can be ohmically separated from and capacitively coupled to passive segments of the PCM, while the upper metal portions are ohmically connected to the lower metal portions. Alternatively, the lower metal portions can be ohmically connected to passive segments of the PCM, while a capacitor is formed in part by at least one of the upper metal portions. Alternatively, at least one of the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. The trench metal liner can be ohmically connected to passive segments of the PCM, while the trench metal plug is ohmically separated from, but capacitively coupled to, the trench metal liner.
    Type: Application
    Filed: December 21, 2018
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard