Patents by Inventor David J. Kubista

David J. Kubista has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8518184
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 8384192
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Publication number: 20110163416
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 7906393
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: March 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Publication number: 20100282164
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7771537
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7647886
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: January 19, 2010
    Assignee: Micron Technology, Inc.
    Inventors: David J. Kubista, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Kevin L. Beaman, Er-Xuan Ping, Lingyi A. Zheng, Cem Basceri
  • Patent number: 7422635
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, David J. Kubista, Cem Basceri
  • Patent number: 7344755
    Abstract: The present disclosure provides methods and apparatus that may be used to process microfeature workpieces, e.g., semiconductor wafers. Some aspects have particular utility in depositing TiN in a batch process. One implementation involves pretreating a surface of a process chamber by contemporaneously introducing first and second pretreatment precursors (e.g., TiCl4 and NH3) to deposit a pretreatment material on a the chamber surface. After the pretreatment, the first microfeature workpiece may be placed in the chamber and TiN may be deposited on the microfeature workpiece by alternately introducing quantities of first and second deposition precursors.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Ronald A. Weimer, Lyle D. Breiner, Er-Xuan Ping, Trung T. Doan, Cem Basceri, David J. Kubista, Lingyi A. Zheng
  • Patent number: 7279398
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Trung T. Doan, Ronald A. Weimer, Kevin L. Beaman, Lyle D. Breiner, Lingyi A. Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David J. Kubista
  • Patent number: 7258892
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: August 21, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 7235138
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Ronald A. Weimer, David J. Kubista, Kevin L. Beaman, Cem Basceri
  • Patent number: 7056806
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Trung T. Doan, Ronald A. Weimer, Kevin L. Beaman, Lyle D. Breiner, Lingyi A. Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David J. Kubista
  • Patent number: 6758911
    Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: July 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, David J. Kubista
  • Patent number: 6716284
    Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, David J. Kubista
  • Publication number: 20030070609
    Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
    Type: Application
    Filed: June 11, 2002
    Publication date: April 17, 2003
    Inventors: Philip H. Campbell, David J. Kubista
  • Publication number: 20030070618
    Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
    Type: Application
    Filed: July 8, 2002
    Publication date: April 17, 2003
    Inventors: Philip H. Campbell, David J. Kubista
  • Patent number: 6461436
    Abstract: An apparatus and process for atomic layer deposition that minimizes mixing of the chemicals and reactive gases is disclosed. The first precursor and second precursor are only mixed with other chemicals and reactive gases when and where desired by installing and monitoring a dispensing fore-line. Also, independent and dedicated chamber outlets, isolation valves, exhaust fore-lines, and exhaust pumps are provided that are activated for the specific gas when needed.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: October 8, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, David J. Kubista
  • Patent number: 5409587
    Abstract: A method of sputtering material onto semiconductor wafers includes: a) providing a sputtering chamber with a sputtering target, a wafer supporting chuck having a supported first wafer, and a collimator positioned between the target and first wafer for filtering material sputtered from the target onto the first wafer; b) providing ionized sputtering atoms within the chamber; c) bombarding the target with the ionized sputtering atoms to dislodge target atoms; d) passing the dislodged target atoms through collimator openings and onto the first wafer, the dislodged target atoms coating the collimator and openings passing therethrough; e) removing the sputter deposited first wafer from the sputtering chamber without breaking vacuum; f) after removing the sputtered first wafer, cleaning the collimator within the chamber without breaking vacuum between removal of the first wafer and the cleaning of the collimator within the chamber; and g) after cleaning of the collimator within the chamber, providing a second wafer
    Type: Grant
    Filed: September 16, 1993
    Date of Patent: April 25, 1995
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sung C. Kim, David J. Kubista