Patents by Inventor David J. Perreault

David J. Perreault has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11909358
    Abstract: Described is a system for modulating power to one or more radio frequency (RF) amplifiers to suppress undesired output signal components, improve linearity and reduce noise. The described systems and techniques enable shaping of spectral components introduced via an amplifier bias voltage owing to transitions among bias discrete states. The systems and techniques facilitate operation of multilevel, RF amplifiers under a wider range of operating conditions. In embodiments, the system includes modulators coupled to a supply terminal port of each of the one or more amplifiers to modulate the voltage levels supplied to the one or more amplifiers. The outputs of the modulators may be combined to provide a combined signal coupled to the amplifiers. A delay circuit delays switching of at least one of the power modulators relative to other modulator, by a variable time delay. This results in suppression of undesired output signal components of the amplifier output.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 20, 2024
    Assignee: Murata Manufacturing Co., LTD.
    Inventors: David J. Perreault, John R. Hoversten, Yevgeniy A. Tkachenko
  • Publication number: 20230421069
    Abstract: Described is a hybrid electronic and magnetic structure that enables a transformer with fractional and reconfigurable effective turns ratios (e.g. 12:0.5, 12:2/3, 12:1, and 12:2) and hereinafter referred to as a Variable-Inverter-Rectifier-Transformer (VIRT). A VIRT is valuable in converters having wide operating voltage ranges and high step-up/down, as it offers a means to reduce turns count and copper loss within a transformer while facilitating voltage doubling and quadrupling. Such characteristics are beneficial for reducing the size of a transformer stage in many power electronics applications, such as USB wall chargers. In embodiments, a VIRT comprises a plurality of switching cells distributed around a magnetic core and coupled to half-turns wound through that core. By controlling operating modes of the switching cells, it is possible to gain control over flux paths and current paths in the transformer.
    Type: Application
    Filed: June 22, 2023
    Publication date: December 28, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: David J. Perreault, Mike Kavian Ranjram, Intae Moon
  • Publication number: 20230378921
    Abstract: Described are circuits and techniques to increase the efficiency of radio-frequency (rf) amplifiers including rf power amplifiers (PAs) through “supply modulation” (also referred to as “drain modulation” or “collector modulation”), in which supply voltages provided to rf amplifiers is adjusted dynamically (“modulated”) over time depending upon the rf signal being synthesized. For the largest efficiency improvements, a supply voltage can be adjusted among discrete voltage levels or continuously on a short time scale. The supply voltages (or voltage levels) provided to an rf amplifier may also be adapted to accommodate longer-term changes in desired rf envelope such as associated with adapting transmitter output strength to minimize errors in data transfer, for rf “traffic” variations.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 23, 2023
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: James Garrett, Sri Harsh Pakala, Brendan Metzner, Ivan Duzevik, David J. Perreault, John R. Hoversten, Yevgeniy A. Tkachenko
  • Publication number: 20230361730
    Abstract: Described are circuits and techniques to increase the efficiency of radio-frequency (rf) amplifiers including rf power amplifiers (PAs) through “supply modulation” (also referred to as “drain modulation” or “collector modulation”), in which supply voltages provided to rf amplifiers is adjusted dynamically (“modulated”) over time depending upon the rf signal being synthesized. For the largest efficiency improvements, a supply voltage can be adjusted among discrete voltage levels or continuously on a short time scale. The supply voltages (or voltage levels) provided to an rf amplifier may also be adapted to accommodate longer-term changes in desired rf envelope such as associated with adapting transmitter output strength to minimize errors in data transfer, for rf “traffic” variations.
    Type: Application
    Filed: July 17, 2023
    Publication date: November 9, 2023
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: James Garrett, Sri Harsh Pakala, Brendan Metzner, Ivan Duzevik, David J. Perreault, John R. Hoversten, Yevgeniy A. Tkachenko
  • Publication number: 20230353051
    Abstract: A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
    Type: Application
    Filed: June 28, 2023
    Publication date: November 2, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: David M. GIULIANO, David J. PERREAULT, Robert C.N. PILAWA-PODGURSKI
  • Patent number: 11736010
    Abstract: A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: August 22, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: David M. Giuliano, David J. Perreault, Robert C. N. Pilawa-Podgurski
  • Publication number: 20230246607
    Abstract: A power generator includes a plurality of amplifier blocks and a combiner. Each of the amplifier blocks include one or more amplifiers, and the combiner combines modulated power signals output from the amplifier blocks to generate an RF power signal of a load. The amplifier blocks are controlled to outphase the modulated power signals based on a phase angle. Ones of the amplifier blocks may perform discrete modulation to generate a respective one of the modulated power signals. The discrete modulation includes selecting different combinations of the amplifiers in one or more of the amplifier blocks to change the RF power signal in discrete steps. In embodiments, the amplifiers may be radio frequency power amplifiers.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 3, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Haoquan Zhang, Anas Al Bastami, David J. Perreault
  • Patent number: 11716030
    Abstract: Described is a hybrid electronic and magnetic structure that enables a transformer with fractional and reconfigurable effective turns ratios (e.g. 12:0.5, 12:?, 12:1, and 12:2) and hereinafter referred to as a Variable-Inverter-Rectifier-Transformer (VIRT). A VIRT is valuable in converters having wide operating voltage ranges and high step-up/down, as it offers a means to reduce turns count and copper loss within a transformer while facilitating voltage doubling and quadrupling. Such characteristics are beneficial for reducing the size of a transformer stage in many power electronics applications, such as USB wall chargers. In embodiments, a VIRT comprises a plurality of switching cells distributed around a magnetic core and coupled to half-turns wound through that core. By controlling operating modes of the switching cells, it is possible to gain control over flux paths and current paths in the transformer.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 1, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: David J. Perreault, Mike Kavian Ranjram, Intae Moon
  • Patent number: 11664773
    Abstract: A power generator includes a plurality of amplifier blocks and a combiner. Each of the amplifier blocks include one or more amplifiers, and the combiner combines modulated power signals output from the amplifier blocks to generate an RF power signal of a load. The amplifier blocks are controlled to outphase the modulated power signals based on a phase angle. Ones of the amplifier blocks may perform discrete modulation to generate a respective one of the modulated power signals. The discrete modulation includes selecting different combinations of the amplifiers in one or more of the amplifier blocks to change the RF power signal in discrete steps. In embodiments, the amplifiers may be radio frequency power amplifiers.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 30, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Haoquan Zhang, Anas Al Bastami, David J. Perreault
  • Patent number: 11637531
    Abstract: Described are concepts, circuits, systems and techniques directed toward N-phase control techniques useful in the design and control of supply generators configured for use in a wide variety of power management applications including, but not limited to mobile applications.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 25, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: David J. Perreault, James Garrett, Sri Harsh Pakala, Brendan Metzner, Ivan Duzevik, John R. Hoversten, Yevgeniy A. Tkachenko
  • Publication number: 20230056740
    Abstract: A circuit comprising a first capacitor configured to be charged to a voltage representing state information of a compensator, a second capacitor, a buffer circuit configured to charge the second capacitor to a voltage substantially equal to that of the first capacitor and a switching network configured to transition between a first state and a second state. When the switching network is in the first state, the second capacitor is charged to the voltage across the first capacitor. When the switching network is in the second state, the buffer circuit is disconnected from the second capacitor and the first capacitor and the second capacitor are connected in parallel.
    Type: Application
    Filed: August 22, 2022
    Publication date: February 23, 2023
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: David J. PERREAULT, John R. HOVERSTEN, Yevgeniy A. TKACHENKO, Aaron COOK, Kapil KESARWANI
  • Publication number: 20230055041
    Abstract: A magnetic device, including a hybrid core including a first magnetic material as a first flux path that carries a low-frequency flux component and a second magnetic material as a second flux path that carries a high-frequency flux component that is a higher frequency flux component than the low-frequency flux component, in which the hybrid core controls distribution of the low-frequency flux component and substantially separates the low-frequency flux component and the high-frequency component; and at least one set of winding turns. The hybrid core includes at least one air gap to provide control over inductance of the magnetic device.
    Type: Application
    Filed: January 15, 2021
    Publication date: February 23, 2023
    Applicants: TRUSTEES OF DARTMOUTH COLLEGE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Charles R. SULLIVAN, David J. PERREAULT
  • Publication number: 20230054485
    Abstract: A power supply modulator circuit includes a multi-output power supply that generates multiple power output signals; at least one power modulator circuit generates a modulated power output signal from the multiple power output signals of the multi-output power supply; at least one pulse shaping network (PSN) having at least one passive element, the PSN configured to shape the modulated power output signal; at least one power amplifier coupled to receive the modulated power signal; and a switching network having a plurality of switches to create or modify power signal paths from the at least one power modulator circuit to the at least one power amplifier.
    Type: Application
    Filed: October 20, 2022
    Publication date: February 23, 2023
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: John R. HOVERSTEN, David J. PERREAULT, Yevgeniy A. TKACHENKO
  • Publication number: 20230057037
    Abstract: A circuit configured to receive a first and second voltages and generate an output voltage, the circuit comprising: a first capacitor configured to charge to a voltage equal a difference between the first voltage and the output voltage; a second capacitor configured to charge to a voltage equal to a difference between the first voltage and the second voltage; and a plurality of conductive paths coupled to the first and second capacitors. In a first state, the conductive paths are configured to cause the second capacitor to charge to the voltage equal to the difference between the first voltage and the second voltage. In a second state, the conductive paths are configured to cause the second capacitor to be connected in parallel with the first capacitor to cause the first capacitor to charge to the voltage equal to the difference between the first voltage and the output voltage.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 23, 2023
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: John R. HOVERSTEN, David J. PERREAULT, Yevgeniy A. TKACHENKO, Aaron COOK, Kapil KESARWANI
  • Publication number: 20220262561
    Abstract: In one aspect, described is a magnetic-core inductor design approach that leverages NiZn ferrites with low loss at RF, distributed gaps and field balancing to achieve improved performance eat tens of MHz and at hundreds of watts and above. Also described is an inductor design which achieves “self-shielding” in which the magnetic field generated by the element is wholly contained within the physical volume of the structure rather than extending into space as a conventional air-core inductor would. This approach enables significant reductions of system enclosure volume and improvements in overall system efficiency.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 18, 2022
    Applicants: Massachusetts Institute of Technology, The Trustees of Dartmouth College, Board of Regents, The University of Texas System
    Inventors: Roderick S. BAYLISS, III, David J. PERREAULT, Charles SULLIVAN, Rachel S. YANG, Alex J. HANSON
  • Publication number: 20220216832
    Abstract: Described are concepts, systems, circuits and techniques directed toward methods and apparatus for generating one or more pulse width modulated (PWM) waveforms with the ability to dynamically control pulse width and phase with respect to a reference signal.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Alexander Sergeev JURKOV, David J. PERREAULT
  • Publication number: 20220200449
    Abstract: A dc-dc converter can include a plurality of switches, a piezoelectric resonator (PR) for power stage energy storage, and a means for controlling one or more switching sequences. The switches operate in accordance with the switching sequences to transfer energy from the input to the output via the PR while providing low-loss resonant soft-charging of the PR's capacitance. The switching sequences include: connected stages in which a first and second PR terminals are both connected to one of the input, the output, or the other PR terminal; and open stages in which at least one of the first or second PR terminal is not connected by a closed switch to one of the input, the output, or the other PR terminal.
    Type: Application
    Filed: June 12, 2020
    Publication date: June 23, 2022
    Inventors: David J. PERREAULT, Jessica BOLES, Joshua PIEL
  • Publication number: 20220149725
    Abstract: Described are circuits and techniques to increase the efficiency of radio-frequency (rf) amplifiers including rf power amplifiers (PAs) through “supply modulation” (also referred to as “drain modulation” or “collector modulation”), in which supply voltages provided to rf amplifiers is adjusted dynamically (“modulated”) over time depending upon the rf signal being synthesized. For the largest efficiency improvements, a supply voltage can be adjusted among discrete voltage levels or continuously on a short time scale. The supply voltages (or voltage levels) provided to an rf amplifier may also be adapted to accommodate longer-term changes in desired rf envelope such as associated with adapting transmitter output strength to minimize errors in data transfer, for rf “traffic” variations.
    Type: Application
    Filed: January 10, 2022
    Publication date: May 12, 2022
    Applicant: Eta Wireless, Inc.
    Inventors: James Garrett, Sri Harsh Pakala, Brendan Metzner, Ivan Duzevik, David J. Perreault, John R. Hoversten, Yevgeniy A. Tkachenko
  • Publication number: 20220131463
    Abstract: A converter circuit and related technique for providing high power density power conversion includes a reconfigurable switched capacitor transformation stage coupled to a magnetic converter (or regulation) stage. The circuits and techniques achieve high performance over a wide input voltage range or a wide output voltage range. The converter can be used, for example, to power logic devices in portable battery operated devices.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 28, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: David M. GIULIANO, David J. PERREAULT, Robert C.N. PILAWA-PODGURSKI
  • Patent number: 11316477
    Abstract: Described are concepts, systems, circuits and techniques directed toward methods and apparatus for generating one or more pulse width modulated (PWM) waveforms with the ability to dynamically control pulse width and phase with respect to a reference signal.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: April 26, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexander Sergeev Jurkov, David J. Perreault