Patents by Inventor David J. Simons

David J. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190254138
    Abstract: For controlling operation of a light source, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: John Ivey, David L. Simon, Hoan Ngo, Anthony J. Norton, Brian Nickol
  • Publication number: 20190250041
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Miikka M. KANGAS, Michael J. BISHOP, Robert CHEN, David I. SIMON, Harold L. SONTAG, III, George Dee SKIDMORE
  • Publication number: 20190227542
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227554
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190210725
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: control the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20190193853
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10323987
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 18, 2019
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Michael J. Bishop, Robert Chen, David I. Simon, Harold L. Sontag, III, George Dee Skidmore
  • Patent number: 10296005
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: May 21, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 9723093
    Abstract: Disclosed is a system for servers to redirect client requests to other servers in order to distribute client traffic among the servers. A client is assigned to a server although the client may be unaware of that assignment. When the client accesses a server, a server possibly identified to the client by a name service, the server checks the client's assignment. If the client is not assigned to this server, then in some scenarios this server redirects the client to its assigned server. The client responds by sending its request to the assigned server. In other scenarios, the first server accessed by the client proxies the client's traffic to the assigned server. A database is kept of client-to-server assignments. If the present load distribution is less than ideal (e.g., clients are assigned to an unavailable server), then the assignment database is updated to reflect how the load should be distributed.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: August 1, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Vishwajith Kumbalimutt, David J. Simons, Robert Brown, Elena Apreutesei
  • Patent number: 9432239
    Abstract: A system and method for uniquely identifying an SIP device extends the SIP communications protocol with an end point identifier, carried for example in the header of an SIP transmission. The end point identifier is useful for routing, registration, subscription, and authentication. The end point (device) of a given user epid can be uniquely identified by creating a key from an epid and a user's address-of-record (URI). This in turn enables improved connection management and security association management when the connections/IP addresses are transient, such as when HTTPS tunneling is used.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: August 30, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sean C. Olson, Jeremy T. Buch, Ajay P. Chitturi, David J. Simons, Nikhil P. Bobde
  • Publication number: 20150106431
    Abstract: Disclosed is a system for servers to redirect client requests to other servers in order to distribute client traffic among the servers. A client is assigned to a server although the client may be unaware of that assignment. When the client accesses a server, a server possibly identified to the client by a name service, the server checks the client's assignment. If the client is not assigned to this server, then in some scenarios this server redirects the client to its assigned server. The client responds by sending its request to the assigned server. In other scenarios, the first server accessed by the client proxies the client's traffic to the assigned server. A database is kept of client-to-server assignments. If the present load distribution is less than ideal (e.g., clients are assigned to an unavailable server), then the assignment database is updated to reflect how the load should be distributed.
    Type: Application
    Filed: March 25, 2014
    Publication date: April 16, 2015
    Applicant: MICROSOFT CORPORATION
    Inventors: Vishwajith Kumbalimutt, David J. Simons, Robert Brown, Elena Apreutesei
  • Patent number: 8732818
    Abstract: End-to-end authentication capability based on public-key certificates is combined with the Session Initiation Protocol (SIP) to allow a SIP node that receives a SIP request message to authenticate the sender of request. The SIP request message is sent with a digital signature generated with a private key of the sender and may include a certificate of the sender. The SIP request message my also be encrypted with a public key of the recipient. After receiving the SIP request, the receiving SIP node obtains a certificate of the sender and authenticates the sender based on the digital signature. The digital signature may be included in an Authorization header of the SIP request, or in a multipart message body constructed according to the S/MIME standard.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Microsoft Corporation
    Inventors: Jeremy T. Buch, David J. Simons
  • Patent number: 8713092
    Abstract: Disclosed is a system for servers to redirect client requests to other servers in order to distribute client traffic among the servers. A client is assigned to a server although the client may be unaware of that assignment. When the client accesses a server, a server possibly identified to the client by a name service, the server checks the client's assignment. If the client is not assigned to this server, then in some scenarios this server redirects the client to its assigned server. The client responds by sending its request to the assigned server. In other scenarios, the first server accessed by the client proxies the client's traffic to the assigned server. A database is kept of client-to-server assignments. If the present load distribution is less than ideal (e.g., clients are assigned to an unavailable server), then the assignment database is updated to reflect how the load should be distributed.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: April 29, 2014
    Assignee: Microsoft Corporation
    Inventors: Vishwajith Kumbalimutt, David J. Simons, Robert I. Brown, Elena Apreutesei
  • Patent number: 8402146
    Abstract: A system and method for uniquely identifying an SIP device extends the SIP communications protocol with an end point identifier, carried for example in the header of an SIP transmission. The end point identifier is useful for routing, registration, subscription, and authentication. The end point (device) of a given user epid can be uniquely identified by creating a key from an epid and a user's address-of-record (URI). This in turn enables improved connection management and security association management when the connections/IP addresses are transient, such as when HTTPS tunneling is used.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 19, 2013
    Assignee: Microsoft Corporation
    Inventors: Sean C. Olson, Jeremy T. Buch, Ajay P. Chitturi, David J. Simons, Nikhil P. Bobde
  • Patent number: 8307421
    Abstract: End-to-end authentication capability based on public-key certificates is combined with the Session Initiation Protocol (SIP) to allow a SIP node that receives a SIP request message to authenticate the sender of request. The SIP request message is sent with a digital signature generated with a private key of the sender and may include a certificate of the sender. The SIP request message my also be encrypted with a public key of the recipient. After receiving the SIP request, the receiving SIP node obtains a certificate of the sender and authenticates the sender based on the digital signature. The digital signature may be included in an Authorization header of the SIP request, or in a multipart message body constructed according to the S/MIME standard.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: November 6, 2012
    Assignee: Microsoft Corporation
    Inventors: Jeremy T. Buch, David J. Simons
  • Publication number: 20120084447
    Abstract: A system and method for uniquely identifying an SIP device extends the SIP communications protocol with an end point identifier, carried for example in the header of an SIP transmission. The end point identifier is useful for routing, registration, subscription, and authentication. The end point (device) of a given user epid can be uniquely identified by creating a key from an epid and a user's address-of-record (URI). This in turn enables improved connection management and security association management when the connections/IP addresses are transient, such as when HTTPS tunneling is used.
    Type: Application
    Filed: August 30, 2011
    Publication date: April 5, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Sean C. Olson, Jeremy T. Buch, Ajay P. Chitturi, David J. Simons, Nikhil P. Bobde
  • Patent number: 8065405
    Abstract: A method and system for aggregating presence information generated by multiple devices associated with a single user is presented. A server acting as a presence agent on behalf of a first user and the first user's computing device receives and responds to a subscription request generated by a computing device operated by a second user that wishes to be permitted as a watcher of the first user. If the server is not capable of acting as a presence agent, then the first user's computing device assumes the role of a presence agent.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: November 22, 2011
    Assignee: Microsoft Corporation
    Inventors: Nikhil Bobde, Jeremy T. Buch, Ajay P. Chitturi, Ann Demirtjis, Vishwajith Kumbalimutt, David J. Simons, Zachary Taylor
  • Patent number: D723980
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 10, 2015
    Inventor: David J. Simons