Patents by Inventor David J. Specht

David J. Specht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210068787
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: David M. SMITH, Donald F. SPECHT, Linda V. CABRERA, Kenneth D. BREWER, David J. SPECHT
  • Patent number: 10835208
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: November 17, 2020
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Publication number: 20200003896
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Patent number: 10401493
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 3, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: Josef R. Call, Henry A. Davis, David M. Smith, David J. Specht, Viet Nam Le, Lang J. McHardy, Joseph James Digiovanni, II, Nathan W. Osborn, Bruce R. Ritzi
  • Publication number: 20190175152
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicant: MAUI IMAGING, INC.
    Inventors: David M. SMITH, Sharon L. ADAM, Donald F. SPECHT, Kenneth D. BREWER, John P. LUNSFORD, David J. SPECHT
  • Patent number: 10206662
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: February 19, 2019
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Sharon L. Adam, Donald F. Specht, Kenneth D. Brewer, John P. Lunsford, David J. Specht
  • Publication number: 20170219704
    Abstract: Systems and methods for network-based ultrasound imaging are provided, which can include a number of features. In some embodiments, an ultrasound imaging system images an object with three-dimensional unfocused pings and obtains digital sample sets from a plurality of receiver elements. A sub-set of the digital sample sets can be electronically transferred to a remote server, where the sub-set can be beamformed to produce a series of two-dimensional image frames. A video stream made up of the series of two-dimensional images frames can then be transferred from the remote server to a display device.
    Type: Application
    Filed: August 18, 2015
    Publication date: August 3, 2017
    Inventors: Josef R. CALL, Henry A. DAVIS, David M. SMITH, David J. SPECHT, Viet Nam LE, Lang J. MCHARDY, Joseph James DIGIOVANNI, II, Nathan W. OSBORN, Bruce R. RITZI
  • Publication number: 20160157833
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventors: David M. SMITH, Sharon L. ADAM, Donald F. SPECHT, Kenneth D. BREWER, John P. LUNSFORD, David J. SPECHT
  • Publication number: 20160095579
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Inventors: David M. SMITH, Donald F. SPECHT, Linda V. CABRERA, Kenneth D. BREWER, David J. SPECHT
  • Patent number: 9282945
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 15, 2016
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Sharon L. Adam, Donald F. Specht, Kenneth D. Brewer, John P. Lunsford, David J. Specht
  • Patent number: 9247926
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e. concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: February 2, 2016
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Patent number: 9220478
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: December 29, 2015
    Assignee: MAUI IMAGING, INC.
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Publication number: 20150157294
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e., concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Application
    Filed: January 12, 2015
    Publication date: June 11, 2015
    Inventors: David M. SMITH, Donald F. SPECHT, Linda V. CABRERA, Kenneth D. BREWER, David J. SPECHT
  • Publication number: 20120095343
    Abstract: A Multiple Aperture Ultrasound Imaging (MAUI) probe or transducer is uniquely capable of simultaneous imaging of a region of interest from separate apertures of ultrasound arrays. Some embodiments provide systems and methods for designing, building and using ultrasound probes having continuous arrays of ultrasound transducers which may have a substantially continuous concave curved shape in two or three dimensions (i.e. concave relative to an object to be imaged). Other embodiments herein provide systems and methods for designing, building and using ultrasound imaging probes having other unique configurations, such as adjustable probes and probes with variable configurations.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Inventors: David M. Smith, Donald F. Specht, Linda V. Cabrera, Kenneth D. Brewer, David J. Specht
  • Publication number: 20120057428
    Abstract: A method of calibrating an ultrasound probe includes mounting an ultrasound probe onto a calibration system, transmitting an ultrasound test signal from an element of the probe through a test medium of the calibration system, and receiving the test signal on a matrix of hydrophones such that an element's position relative to other elements and other arrays within the same probe can be computed. Further, the system described herein is configured to detect the acoustic performance of elements of a probe and report the results to an end user or service provider.
    Type: Application
    Filed: October 21, 2011
    Publication date: March 8, 2012
    Inventors: Donald F. Specht, Kenneth D. Brewer, David M. Smith, Sharon L. Adam, John P. Lunsford, David J. Specht
  • Patent number: 7138326
    Abstract: A shadow mask for depositing solder bumps includes additional dummy holes located adjacent holes corresponding to most of the perimeter chips of the wafer. The additional dummy provide more uniform plasma etching of contacts of the wafer, improve etching of contacts of perimeter chips, and lower contact resistance of contacts of perimeter chips. The extra holes also provide solder bumps outside the perimeter chips that can be used to support a second shadow mask for deposition of an additional material, such as tin, on the reflowed solder bumps for mounting the chips on a plastic substrate at low temperature. An improved mask to wafer alignment aid is formed from standard solder bumps. The improved alignment aid avoids damage to test probes and provides improved course alignment.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: November 21, 2006
    Assignee: International Business Machines Corp.
    Inventors: Harry D. Cox, David P. Daniel, Leonard J. Gardecki, Albert J. Gregoritsch, III, Ruth A. Machell Julianelle, Charles H. Keeler, Doris P. Pulaski, Mary A. Schaffer, David L. Smith, David J. Specht, Adolf E. Wirsing
  • Publication number: 20040135233
    Abstract: A shadow mask for depositing solder bumps includes additional dummy holes located adjacent holes corresponding to most of the perimeter chips of the wafer. The additional dummy provide more uniform plasma etching of contacts of the wafer, improve etching of contacts of perimeter chips, and lower contact resistance of contacts of perimeter chips. The extra holes also provide solder bumps outside the perimeter chips that can be used to support a second shadow mask for deposition of an additional material, such as tin, on the reflowed solder bumps for mounting the chips on a plastic substrate at low temperature. An improved mask to wafer alignment aid is formed from standard solder bumps. The improved alignment aid avoids damage to test probes and provides improved course alignment.
    Type: Application
    Filed: July 23, 2003
    Publication date: July 15, 2004
    Inventors: Harry D. Cox, David P. Daniel, Leonard J. Gardecki, Albert J. Gregoritsch, Ruth A. Machell Julianelle, Charles H. Keeler, Doris P. Pulaski, Mary A. Schaffer, David L. Smith, David J. Specht, Adolf E. Wirsing
  • Patent number: 6706621
    Abstract: A shadow mask for depositing solder bumps includes additional dummy holes located adjacent holes corresponding to most of the perimeter chips of the wafer. The additional dummy provide more uniform plasma etching of contacts of the wafer, improve etching of contacts of perimeter chips, and lower contact resistance of contacts of perimeter chips. The extra holes also provide solder bumps outside the perimeter chips that can be used to support a second shadow mask for deposition of an additional material, such as tin, on the reflowed solder bumps for mounting the chips on a plastic substrate at low temperature. An improved mask to wafer alignment aid is formed from standard solder bumps. The improved alignment aid avoids damage to test probes and provides improved course alignment.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 16, 2004
    Assignee: International Business Machines Corporation
    Inventors: Harry D. Cox, David P. Daniel, Leonard J. Gardecki, Albert J. Gregoritsch, III, Ruth A. Machell Julianelle, Charles H. Keeler, Doris P. Pulaski, Mary A. Schaffer, David L. Smith, David J. Specht, Adolf E. Wirsing
  • Publication number: 20030071329
    Abstract: A shadow mask for depositing solder bumps includes additional dummy holes located adjacent holes corresponding to most of the perimeter chips of the wafer. The additional dummy provide more uniform plasma etching of contacts of the wafer, improve etching of contacts of perimeter chips, and lower contact resistance of contacts of perimeter chips. The extra holes also provide solder bumps outside the perimeter chips that can be used to support a second shadow mask for deposition of an additional material, such as tin, on the reflowed solder bumps for mounting the chips on a plastic substrate at low temperature. An improved mask to wafer alignment aid is formed from standard solder bumps. The improved alignment aid avoids damage to test probes and provides improved course alignment.
    Type: Application
    Filed: November 22, 2002
    Publication date: April 17, 2003
    Applicant: International Business Machines Corporation
    Inventors: Harry D. Cox, David P. Daniel, Leonard J. Gardecki, Albert J. Gregoritsch, Ruth A. Machell Julianelle, Charles H. Keeler, Doris P. Pulaski, Mary A. Schaffer, David L. Smith, David J. Specht, Adolf E. Wirsing